glutathione disulfide
{{Chembox
| Verifiedfields = changed
| Watchedfields = changed
| verifiedrevid = 420809162
| ImageFile = Glutathione disulfide.svg
| ImageSize = 250px
| SystematicName = (2S,2′S)-5,5′-(Disulfanediylbis{(2R)-3-[(carboxymethyl)amino]-3-oxopropane-1,2-diyl})bis(2-amino-5-oxopentanoic acid)
| OtherNames =
|Section1={{Chembox Identifiers
| IUPHAR_ligand = 6835
| Abbreviations = GSSG
| CASNo_Ref = {{cascite|correct|CAS}}
| CASNo = 27025-41-8
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII = ULW86O013H
| KEGG = C00127
| PubChem = 65359
| ChEMBL_Ref = {{ebicite|changed|EBI}}
| ChEMBL = 1372
| PubChem2 = 11215652
| ChemSpiderID_Ref = {{chemspidercite|changed|chemspider}}
| ChemSpiderID = 58835
| SMILES = C(CC(=O)N[C@@H](CSSC[C@@H](C(=O)NCC(=O)O)NC(=O)CC[C@@H](C(=O)O)N)C(=O)NCC(=O)O)[C@@H](C(=O)O)N
| InChI = 1/C20H32N6O12S2/c21-9(19(35)36)1-3-13(27)25-11(17(33)23-5-15(29)30)7-39-40-8-12(18(34)24-6-16(31)32)26-14(28)4-2-10(22)20(37)38/h9-12H,1-8,21-22H2,(H,23,33)(H,24,34)(H,25,27)(H,26,28)(H,29,30)(H,31,32)(H,35,36)(H,37,38)/t9-,10-,11-,12-/m0/s1
| InChIKey = YPZRWBKMTBYPTK-BJDJZHNGBD
| StdInChI_Ref = {{stdinchicite|changed|chemspider}}
| StdInChI = 1S/C20H32N6O12S2/c21-9(19(35)36)1-3-13(27)25-11(17(33)23-5-15(29)30)7-39-40-8-12(18(34)24-6-16(31)32)26-14(28)4-2-10(22)20(37)38/h9-12H,1-8,21-22H2,(H,23,33)(H,24,34)(H,25,27)(H,26,28)(H,29,30)(H,31,32)(H,35,36)(H,37,38)/t9-,10-,11-,12-/m0/s1
| StdInChIKey_Ref = {{stdinchicite|changed|chemspider}}
| StdInChIKey = YPZRWBKMTBYPTK-BJDJZHNGSA-N
}}
|Section2={{Chembox Properties
| C=20|H=32|N=6|O=12|S=2
| Appearance =
| Density =
| MeltingPt =
| BoilingPt =
| Solubility =
}}
|Section3={{Chembox Hazards
| MainHazards =
| FlashPt =
| AutoignitionPt =
}}
}}
Glutathione disulfide (GSSG) is a disulfide derived from two glutathione molecules.{{cite journal |vauthors=Meister A, Anderson ME |title=Glutathione |journal=Annual Review of Biochemistry |volume=52 |pages=711–60 |year=1983 |pmid=6137189 |doi=10.1146/annurev.bi.52.070183.003431 }}
In living cells, glutathione disulfide is reduced into two molecules of glutathione with reducing equivalents from the coenzyme NADPH. This reaction is catalyzed by the enzyme glutathione reductase.{{cite journal |vauthors=Deneke SM, Fanburg BL |title=Regulation of cellular glutathione |journal=The American Journal of Physiology |volume=257 |issue=4 Pt 1 |pages=L163–73 |year=1989 |doi=10.1152/ajplung.1989.257.4.L163 |pmid=2572174 |url=http://ajplung.physiology.org/cgi/pmidlookup?view=reprint&pmid=2572174 |access-date=2017-03-20 |archive-date=2020-06-10 |archive-url=https://web.archive.org/web/20200610200759/https://journals.physiology.org/doi/abs/10.1152/ajplung.1989.257.4.L163?view=reprint&pmid=2572174 |url-status=dead }}
Antioxidant enzymes, such as glutathione peroxidases and peroxiredoxins, generate glutathione disulfide during the reduction of peroxides such as hydrogen peroxide (H2O2) and organic hydroperoxides (ROOH):{{cite journal |vauthors=Meister A |title=Glutathione metabolism and its selective modification |journal=The Journal of Biological Chemistry |volume=263 |issue=33 |pages=17205–8 |year=1988 |doi=10.1016/S0021-9258(19)77815-6 |pmid=3053703 |url=http://www.jbc.org/cgi/pmidlookup?view=long&pmid=3053703 |doi-access=free |access-date=2017-03-20 |archive-date=2020-06-10 |archive-url=https://web.archive.org/web/20200610200802/https://www.jbc.org/content/263/33/17205.long |url-status=dead }}
:2 GSH + ROOH → GSSG + ROH + H2O
Other enzymes, such as glutaredoxins, generate glutathione disulfide through thiol-disulfide exchange with protein disulfide bonds or other low molecular mass compounds, such as coenzyme A disulfide or dehydroascorbic acid.{{cite journal |vauthors=Holmgren A, Johansson C, Berndt C, Lönn ME, Hudemann C, Lillig CH |title=Thiol redox control via thioredoxin and glutaredoxin systems |journal=Biochem. Soc. Trans. |volume=33 |issue=Pt 6 |pages=1375–7 |date=December 2005 |pmid=16246122 |doi=10.1042/BST20051375}}
:2 GSH + R-S-S-R → GSSG + 2 RSH
The GSH:GSSG ratio is therefore an important bioindicator of cellular health, with a higher ratio signifying less oxidative stress in the organism. A lower ratio may even be indicative of neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease.{{cite book |first1=Joshua B. |last1=Owen |first2=D. Allan |last2=Butterfield |chapter=Measurement of oxidized/reduced glutathione ratio |editor1-first=Peter |editor1-last=Bross |editor2-first=Niels |editor2-last=Gregersen |title=Protein Misfolding and Cellular Stress in Disease and Aging |volume=648 |pages=269–77 |year=2010 |pmid=20700719 |doi=10.1007/978-1-60761-756-3_18 |series=Methods in Molecular Biology |isbn=978-1-60761-755-6 }}
Neuromodulator
GSSG, along with glutathione and S-nitrosoglutathione (GSNO), have been found to bind to the glutamate recognition site of the NMDA and AMPA receptors (via their γ-glutamyl moieties), and may be endogenous neuromodulators.{{cite journal |vauthors=Steullet P, Neijt HC, Cuénod M, Do KQ |title=Synaptic plasticity impairment and hypofunction of NMDA receptors induced by glutathione deficit: relevance to schizophrenia |journal=Neuroscience |volume=137 |issue=3 |pages=807–19 |year=2006 |pmid=16330153 |doi=10.1016/j.neuroscience.2005.10.014 |s2cid=1417873 }}{{cite journal |vauthors=Varga V, Jenei Z, Janáky R, Saransaari P, Oja SS |title=Glutathione is an endogenous ligand of rat brain N-methyl-D-aspartate (NMDA) and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors |journal=Neurochemical Research |volume=22 |issue=9 |pages=1165–71 |year=1997 |pmid=9251108 |doi=10.1023/A:1027377605054 |s2cid=24024090 }} At millimolar concentrations, they may also modulate the redox state of the NMDA receptor complex.
See also
References
{{Reflist|2}}
{{Antioxidants}}
{{Neurotransmitters}}
{{Glutamatergics}}
{{DEFAULTSORT:Glutathione Disulfide}}