great icosahedral 120-cell

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Great icosahedral 120-cell

bgcolor=#ffffff align=center colspan=2|280px
Orthogonal projection
bgcolor=#e7dcc3|TypeSchläfli-Hess polytope
bgcolor=#e7dcc3|Cells120 {3,5/2}
bgcolor=#e7dcc3|Faces1200 {3}
bgcolor=#e7dcc3|Edges720
bgcolor=#e7dcc3|Vertices120
bgcolor=#e7dcc3|Vertex figure{5/2,5}
bgcolor=#e7dcc3|Schläfli symbol{3,5/2,5}
bgcolor=#e7dcc3|Coxeter-Dynkin diagram{{CDD|node_1|3|node|5|rat|d2|node|5|node}}
bgcolor=#e7dcc3|Symmetry groupH4, [3,3,5]
bgcolor=#e7dcc3|DualGreat grand 120-cell
bgcolor=#e7dcc3|PropertiesRegular

In geometry, the great icosahedral 120-cell, great polyicosahedron or great faceted 600-cell is a regular star 4-polytope with Schläfli symbol {3,5/2,5}. It is one of 10 regular Schläfli-Hess polytopes.

Related polytopes

It has the same edge arrangement as the great stellated 120-cell, and grand stellated 120-cell, and face arrangement of the grand 600-cell.

class="wikitable" width=600

|+ Orthographic projections by Coxeter planes

align=center

!H3

!A2 / B3 / D4

!A3 / B2

align=center

|200px

|200px

|200px

See also

References

  • Edmund Hess, (1883) Einleitung in die Lehre von der Kugelteilung mit besonderer Berücksichtigung ihrer Anwendung auf die Theorie der Gleichflächigen und der gleicheckigen Polyeder [http://www.hti.umich.edu/cgi/b/bib/bibperm?q1=ABN8623.0001.001].
  • H. S. M. Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. {{ISBN|0-486-61480-8}}.
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, {{ISBN|978-1-56881-220-5}} (Chapter 26, Regular Star-polytopes, pp. 404–408)
  • {{KlitzingPolytopes|polychora.htm|4D uniform polytopes (polychora)|x3o5/2o5o - gofix}}