inductive tensor product
{{Distinguish|Injective tensor product}}
{{more footnotes needed|date=June 2020}}
{{Expert needed|1=Mathematics|reason=It's a specialized topic of Functional analysis|date=April 2020}}
The finest locally convex topological vector space (TVS) topology on the tensor product of two locally convex TVSs, making the canonical map (defined by sending to ) {{em|separately}} continuous is called the inductive topology or the -topology. When is endowed with this topology then it is denoted by and called the inductive tensor product of and {{sfn|Schaefer|Wolff|1999|p=96}}
Preliminaries
Throughout let and be locally convex topological vector spaces and be a linear map.
- is a topological homomorphism or homomorphism, if it is linear, continuous, and is an open map, where the image of has the subspace topology induced by
- If is a subspace of then both the quotient map and the canonical injection are homomorphisms. In particular, any linear map can be canonically decomposed as follows: where defines a bijection.
- The set of continuous linear maps (resp. continuous bilinear maps ) will be denoted by (resp. ) where if is the scalar field then we may instead write (resp. ).
- We will denote the continuous dual space of by and the algebraic dual space (which is the vector space of all linear functionals on whether continuous or not) by
- To increase the clarity of the exposition, we use the common convention of writing elements of with a prime following the symbol (e.g. denotes an element of and not, say, a derivative and the variables and need not be related in any way).
- A linear map from a Hilbert space into itself is called positive if for every In this case, there is a unique positive map called the square-root of such that {{sfn|Trèves|2006|p=488}}
- If is any continuous linear map between Hilbert spaces, then is always positive. Now let denote its positive square-root, which is called the absolute value of Define first on by setting for and extending continuously to and then define on by setting for and extend this map linearly to all of The map is a surjective isometry and
- A linear map is called compact or completely continuous if there is a neighborhood of the origin in such that is precompact in {{sfn|Trèves|2006|p=483}}
- In a Hilbert space, positive compact linear operators, say have a simple spectral decomposition discovered at the beginning of the 20th century by Fredholm and F. Riesz:{{sfn|Trèves|2006|p=490}}
::There is a sequence of positive numbers, decreasing and either finite or else converging to 0, and a sequence of nonzero finite dimensional subspaces of () with the following properties: (1) the subspaces are pairwise orthogonal; (2) for every and every ; and (3) the orthogonal of the subspace spanned by is equal to the kernel of {{sfn|Trèves|2006|p=490}}
=Notation for topologies=
{{Main|Topology of uniform convergence|Mackey topology}}
- denotes the coarsest topology on making every map in continuous and or denotes endowed with this topology.
- denotes weak-* topology on and or denotes endowed with this topology.
- Every induces a map defined by is the coarsest topology on making all such maps continuous.
- denotes the topology of bounded convergence on and or denotes endowed with this topology.
- denotes the topology of bounded convergence on or the strong dual topology on and or denotes endowed with this topology.
- As usual, if is considered as a topological vector space but it has not been made clear what topology it is endowed with, then the topology will be assumed to be
Universal property
Suppose that is a locally convex space and that is the canonical map from the space of all bilinear mappings of the form going into the space of all linear mappings of {{sfn|Schaefer|Wolff|1999|p=96}}
Then when the domain of is restricted to (the space of separately continuous bilinear maps) then the range of this restriction is the space of continuous linear operators
In particular, the continuous dual space of is canonically isomorphic to the space the space of separately continuous bilinear forms on
If is a locally convex TVS topology on ( with this topology will be denoted by ), then is equal to the inductive tensor product topology if and only if it has the following property:{{sfn|Grothendieck| 1966|p=73}}
:For every locally convex TVS if is the canonical map from the space of all bilinear mappings of the form going into the space of all linear mappings of then when the domain of is restricted to (space of separately continuous bilinear maps) then the range of this restriction is the space of continuous linear operators
See also
- {{annotated link|Auxiliary normed spaces}}
- {{annotated link|Initial topology}}
- {{annotated link|Injective tensor product}}
- {{annotated link|Nuclear operator}}
- {{annotated link|Nuclear space}}
- {{annotated link|Projective tensor product}}
- {{annotated link|Tensor product of Hilbert spaces}}
- {{annotated link|Topological tensor product}}
References
{{reflist}}
Bibliography
- {{cite book|last=Diestel|first=Joe|title=The metric theory of tensor products : Grothendieck's résumé revisited|publisher=American Mathematical Society|location=Providence, R.I|year=2008|isbn=978-0-8218-4440-3|oclc=185095773}}
- {{cite book|last=Dubinsky|first=Ed|title=The structure of nuclear Fréchet spaces|publisher=Springer-Verlag|location=Berlin New York|year=1979|isbn=3-540-09504-7|oclc=5126156}}
- {{cite book|last=Grothendieck|first=Alexander| title=Produits tensoriels topologiques et espaces nucléaires|publisher=American Mathematical Society|location=Providence|year=1966|isbn=0-8218-1216-5|oclc=1315788|language=fr}}
- {{cite book|last=Husain|first=Taqdir|title=Barrelledness in topological and ordered vector spaces|publisher=Springer-Verlag|location=Berlin New York|year=1978|isbn=3-540-09096-7|oclc=4493665}}
- {{Khaleelulla Counterexamples in Topological Vector Spaces}}
- {{Narici Beckenstein Topological Vector Spaces|edition=2}}
- {{cite book|last=Nlend|first=H|title=Bornologies and functional analysis : introductory course on the theory of duality topology-bornology and its use in functional analysis|publisher=North-Holland Pub. Co. Sole distributors for the U.S.A. and Canada, Elsevier-North Holland|location=Amsterdam New York New York|year=1977|isbn=0-7204-0712-5|oclc=2798822}}
- {{cite book|last=Nlend|first=H|title=Nuclear and conuclear spaces : introductory courses on nuclear and conuclear spaces in the light of the duality|publisher=North-Holland Pub. Co. Sole distributors for the U.S.A. and Canada, Elsevier North-Holland|location=Amsterdam New York New York, N.Y|year=1981|isbn=0-444-86207-2|oclc=7553061}}
- {{cite book|last=Pietsch|first=Albrecht|title=Nuclear locally convex spaces|publisher=Springer-Verlag|location=Berlin, New York|year=1972|isbn=0-387-05644-0|oclc=539541}}
- {{cite book|last=Robertson|first=A. P.|title=Topological vector spaces|publisher=University Press|location=Cambridge England|year=1973|isbn=0-521-29882-2|oclc=589250}}
- {{cite book|last=Ryan|first=Raymond|title=Introduction to tensor products of Banach spaces|publisher=Springer|location=London New York|year=2002|isbn=1-85233-437-1|oclc=48092184}}
- {{Schaefer Wolff Topological Vector Spaces|edition=2}}
- {{Trèves François Topological vector spaces, distributions and kernels}}
- {{cite book|author=Wong|title=Schwartz spaces, nuclear spaces, and tensor products|publisher=Springer-Verlag|location=Berlin New York|year=1979|isbn=3-540-09513-6|oclc=5126158}}
External links
- [https://ncatlab.org/nlab/show/nuclear+space Nuclear space at ncatlab]
{{TopologicalTensorProductsAndNuclearSpaces}}
{{Functional analysis}}