inflation-restriction exact sequence
In mathematics, the inflation-restriction exact sequence is an exact sequence occurring in group cohomology and is a special case of the five-term exact sequence arising from the study of spectral sequences.
Specifically, let G be a group, N a normal subgroup, and A an abelian group which is equipped with an action of G, i.e., a homomorphism from G to the automorphism group of A. The quotient group G/N acts on
::AN = { a ∈ A : na = a for all n ∈ N}.
:
Then the inflation-restriction exact sequence is:
::0 → H 1(G/N, AN) → H 1(G, A) → H 1(N, A)G/N → H 2(G/N, AN) →H 2(G, A)
:
In this sequence, there are maps
- inflation H 1(G/N, AN) → H 1(G, A)
- restriction H 1(G, A) → H 1(N, A)G/N
- transgression H 1(N, A)G/N → H 2(G/N, AN)
- inflation H 2(G/N, AN) →H 2(G, A)
The inflation and restriction are defined for general n:
- inflation Hn(G/N, AN) → Hn(G, A)
- restriction Hn(G, A) → Hn(N, A)G/N
The transgression is defined for general n
- transgression Hn(N, A)G/N → Hn+1(G/N, AN)
only if Hi(N, A)G/N = 0 for i ≤ n − 1.Gille & Szamuely (2006) p.67
The sequence for general n may be deduced from the case n = 1 by dimension-shifting or from the Lyndon–Hochschild–Serre spectral sequence.Gille & Szamuely (2006) p. 68
Notes
{{reflist}}
References
- {{cite book | last1=Gille | first1=Philippe | last2=Szamuely | first2=Tamás | title=Central simple algebras and Galois cohomology | series=Cambridge Studies in Advanced Mathematics | volume=101 | location=Cambridge | publisher=Cambridge University Press | year=2006 | isbn=0-521-86103-9 | zbl=1137.12001 }}
- {{cite book | page=[https://archive.org/details/handbookofalgebr0003unse/page/282 282] | title=Handbook of Algebra, Volume 1 | first=Michiel | last=Hazewinkel | publisher=Elsevier | year=1995 | isbn=0444822127 | url=https://archive.org/details/handbookofalgebr0003unse/page/282 }}
- {{cite book | first=Helmut | last=Koch | title=Algebraic Number Theory | publisher=Springer-Verlag | year=1997 | isbn=3-540-63003-1 | zbl=0819.11044 | series=Encycl. Math. Sci. | volume=62 | edition=2nd printing of 1st }}
- {{cite book | pages=112–113 | title=Cohomology of Number Fields | volume=323 | series=Grundlehren der Mathematischen Wissenschaften | first1=Jürgen | last1=Neukirch | authorlink1=Jürgen Neukirch | first2=Alexander | last2=Schmidt | first3=Kay | last3=Wingberg | edition=2nd | publisher=Springer-Verlag | year=2008 | isbn=978-3-540-37888-4 | zbl=1136.11001 }}
- {{cite book | page=214 | title=The Solution of The K(GV) Problem | volume=4 | series=Advanced Texts in Mathematics| first=Peter | last=Schmid | publisher=Imperial College Press | year=2007 | isbn=978-1860949708 }}
- {{cite book | last=Serre | first=Jean-Pierre | authorlink=Jean-Pierre Serre | title=Local Fields | translator-link=Marvin Greenberg|translator-first1=Marvin Jay|translator-last=Greenberg | series=Graduate Texts in Mathematics | volume=67 | publisher=Springer-Verlag | year=1979 | isbn=0-387-90424-7 | zbl=0423.12016 | pages=117–118 }}
{{algebra-stub}}