integrable module

{{one source |date=May 2024}}

In algebra, an integrable module (or integrable representation) of a Kac–Moody algebra \mathfrak g (a certain infinite-dimensional Lie algebra) is a representation of \mathfrak g such that (1) it is a sum of weight spaces and (2) the Chevalley generators e_i, f_i of \mathfrak g are locally nilpotent.{{harvnb|Kac|1990|loc=§ 3.6.}} For example, the adjoint representation of a Kac–Moody algebra is integrable.{{harvnb|Kac|1990|loc=Lemma 3.5.}}

Notes

{{reflist}}

References

  • {{cite book|first=Victor|last=Kac|author-link=Victor Kac|title=Infinite dimensional Lie algebras|edition= 3rd |publisher= Cambridge University Press |year=1990|isbn=0-521-46693-8|url=https://books.google.com/books?id=kuEjSb9teJwC&q=Victor%20G.%20Kac&pg=PP1}}

Category:Abstract algebra

{{algebra-stub}}