inverse Pythagorean theorem

{{Short description|Relation between the side lengths and altitude of a right triangle}}

File:inverse_pythagorean_theorem.svg

class="wikitable" style="text-align:right; float:right; clear:right; margin-left:1ex;"

! Base
Pytha-
gorean
triple !! AC !! BC !! CD !! rowspan="6" style="padding:1px;"| !! AB

(3, {{fsp}}4, {{fsp}}5)20 = {{fsp}}4×{{fsp}}515 = {{fsp}}3×{{fsp}}512 = {{fsp}}3×{{fsp}}425 = {{fsp}}52
(5, 12, 13)156 = 12×1365 = {{fsp}}5×1360 = {{fsp}}5×12169 = 132
(8, 15, 17)255 = 15×17136 = {{fsp}}8×17120 = {{fsp}}8×15289 = 172
(7, 24, 25)600 = 24×25175 = {{fsp}}7×25168 = {{fsp}}7×24625 = 252
(20, 21, 29)609 = 21×29580 = 20×29420 = 20×21841 = 292
colspan="6" style="text-align:left;"|All positive integer primitive inverse-Pythagorean triples having up to three digits, with the hypotenuse for comparison

In geometry, the inverse Pythagorean theorem (also known as the reciprocal Pythagorean theoremR. B. Nelsen, Proof Without Words: A Reciprocal Pythagorean Theorem, Mathematics Magazine, 82, December 2009, p. 370 or the upside down Pythagorean theoremThe upside-down Pythagorean theorem, Jennifer Richinick, The Mathematical Gazette, Vol. 92, No. 524 (July 2008), pp. 313-316) is as follows:Johan Wästlund, "Summing inverse squares by euclidean

geometry", http://www.math.chalmers.se/~wastlund/Cosmic.pdf, pp. 4–5.

:Let {{mvar|A}}, {{mvar|B}} be the endpoints of the hypotenuse of a right triangle {{math|△ABC}}. Let {{mvar|D}} be the foot of a perpendicular dropped from {{mvar|C}}, the vertex of the right angle, to the hypotenuse. Then

:: \frac 1 {CD^2} = \frac 1 {AC^2} + \frac 1 {BC^2}.

This theorem should not be confused with proposition 48 in book 1 of Euclid's Elements, the converse of the Pythagorean theorem, which states that if the square on one side of a triangle is equal to the sum of the squares on the other two sides then the other two sides contain a right angle.

Proof

The area of triangle {{math|△ABC}} can be expressed in terms of either {{mvar|AC}} and {{mvar|BC}}, or {{mvar|AB}} and {{mvar|CD}}:

:\begin{align}

\tfrac{1}{2} AC \cdot BC &= \tfrac{1}{2} AB \cdot CD \\[4pt]

(AC \cdot BC)^2 &= (AB \cdot CD)^2 \\[4pt]

\frac{1}{CD^2} &= \frac{AB^2}{AC^2 \cdot BC^2}

\end{align}

given {{math|CD > 0}}, {{math|AC > 0}} and {{math|BC > 0}}.

Using the Pythagorean theorem,

:\begin{align}

\frac{1}{CD^2} &= \frac{BC^2 + AC^2}{AC^2 \cdot BC^2} \\[4pt]

&= \frac{BC^2}{AC^2 \cdot BC^2} + \frac{AC^2}{AC^2 \cdot BC^2} \\[4pt]

\quad \therefore \;\; \frac{1}{CD^2} &= \frac{ 1 }{AC^2} + \frac{1}{BC^2}

\end{align}

as above.

Note in particular:

:\begin{align}

\tfrac{1}{2} AC \cdot BC &= \tfrac{1}{2} AB \cdot CD \\[4pt]

CD &= \tfrac{AC \cdot BC}{AB} \\[4pt]

\end{align}

Special case of the cruciform curve

The cruciform curve or cross curve is a quartic plane curve given by the equation

:x^2 y^2 - b^2 x^2 - a^2 y^2 = 0

where the two parameters determining the shape of the curve, {{mvar|a}} and {{mvar|b}} are each {{mvar|CD}}.

Substituting {{mvar|x}} with {{mvar|AC}} and {{mvar|y}} with {{mvar|BC}} gives

:\begin{align}

AC^2 BC^2 - CD^2 AC^2 - CD^2 BC^2 &= 0 \\[4pt]

AC^2 BC^2 &= CD^2 BC^2 + CD^2 AC^2 \\[4pt]

\frac{1}{CD^2} &= \frac{BC^2}{AC^2 \cdot BC^2} + \frac{AC^2}{AC^2 \cdot BC^2} \\[4pt]

\therefore \;\; \frac{1}{CD^2} &= \frac{1}{AC^2} + \frac{1}{BC^2}

\end{align}

Inverse-Pythagorean triples can be generated using integer parameters {{mvar|t}} and {{mvar|u}} as follows.{{Cite web|url=http://math.stackexchange.com/a/2688836|title=Diophantine equation of three variables}}

:\begin{align}

AC &= (t^2 + u^2)(t^2 - u^2) \\

BC &= 2tu(t^2 + u^2) \\

CD &= 2tu(t^2 - u^2)

\end{align}

Application

If two identical lamps are placed at {{mvar|A}} and {{mvar|B}}, the theorem and the inverse-square law imply that the light intensity at {{mvar|C}} is the same as when a single lamp is placed at {{mvar|D}}.

See also

  • {{Annotated link|Geometric mean theorem}}
  • {{Annotated link|Pythagorean theorem}}

References

{{Reflist}}

{{Geometry-stub}}

Category:Geometry