iron(III) oxide-hydroxide

{{Short description|Hydrous ferric oxide (HFO)}}

{{Chembox

| Watchedfields = changed

| verifiedrevid = 477000862

| ImageFile = Hydroxid železitý.PNG

| ImageFile_Ref = {{chemboximage|correct|??}}

| ImageSize = 244

| ImageName = Samples of iron(III) oxide-hydroxide monohydrate in a vial, and a spoon

| IUPACName = Iron(III) oxide-hydroxide

| OtherNames = Metaferric acid
Ferric oxyhydroxide
Goethite

|Section1={{Chembox Identifiers

| CASNo = 1310-14-1

| CASNo_Ref = {{cascite|correct|CAS}}

| UNII_Ref = {{fdacite|correct|FDA}}

| UNII = 87PZU03K0K

| CASNo1 = 20344-49-4

| CASNo1_Ref = {{cascite|correct|CAS}}

| PubChem = 91502

| ChemSpiderID = 82623

| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}

| EINECS = 215-176-6

| MeSHName = Goethite

| SMILES = O=[Fe]O

| StdInChI = 1S/Fe.H2O.O/h;1H2;/q+1;;/p-1

| StdInChI_Ref = {{stdinchicite|correct|chemspider}}

| StdInChIKey = AEIXRCIKZIZYPM-UHFFFAOYSA-M

| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}

}}

|Section2={{Chembox Properties

| Formula = FeO(OH)

| Appearance = Vivid, dark orange, opaque crystals

| Odor = odorless

| Density = 4.25 g/cm3

| Solubility = insoluble at pH 7

| SolubilityProduct = 2.79×10−39 for Fe(OH)3{{cite web |url=http://bilbo.chm.uri.edu/CHM112/tables/KspTable.htm |title=Solubility product constants at 25 oC |access-date=2015-02-23 |url-status=dead |archive-url=https://web.archive.org/web/20150226121932/http://bilbo.chm.uri.edu/CHM112/tables/KspTable.htm |archive-date=2015-02-26 }}

}}

|Section3={{Chembox Hazards

| NFPA-H = 1

| NFPA-F = 0

| NFPA-R = 0

}}

| Section6 = {{Chembox Pharmacology

| ATCCode_prefix = B03

| ATCCode_suffix = AB04

}}

}}

Iron(III) oxide-hydroxide or ferric oxyhydroxideA. L. Mackay (1960): "β-Ferric Oxyhydroxide". Mineralogical Magazine (Journal of the Mineralogical Society), volume 32, issue 250, pages 545-557. {{doi|10.1180/minmag.1960.032.250.04}} is the chemical compound of iron, oxygen, and hydrogen with formula {{chem|FeO(OH)}}.

The compound is often encountered as one of its hydrates, {{chem|FeO(OH)}}·nWater [rust]. The monohydrate {{chem|FeO(OH)}}·{{chem|H|2|O}} is often referred to as iron(III) hydroxide {{chem|Fe|(|OH|)|3}}, hydrated iron oxide, yellow iron oxide, or Pigment Yellow 42.

Natural occurrences

= Minerals =

Anhydrous ferric hydroxide occurs in the nature as the exceedingly rare mineral bernalite, Fe(OH)3·nH2O (n = 0.0–0.25).{{Cite web|url=https://www.mindat.org/min-635.html|title = Bernalite}}{{Cite web|url=https://www.ima-mineralogy.org/Minlist.htm|title=List of Minerals|date=21 March 2011}} Iron oxyhydroxides, {{chem|FeOOH}}, are much more common and occur naturally as structurally different minerals (polymorphs) denoted by the Greek letters α, β, γ and δ.

  • Goethite, α-FeO(OH), has been used as an ochre pigment since prehistoric times.
  • Akaganeite is the β polymorph,A. L. Mackay (1962): "β-Ferric oxyhydroxide—akaganéite", Mineralogical Magazine (Journal of the Mineralogical Society), volume 33, issue 259, pages 270-280 {{doi|10.1180/minmag.1962.033.259.02}} formed by weathering and noted for its presence in some meteorites and the lunar surface. However, recently it has been determined that it must contain some chloride ions to stabilize its structure, so that its more accurate formula is {{chem|FeO|0.833|(OH)|1.167|Cl|0.167}} or {{chem|Fe|6|O|5|(OH)|7|Cl}}.C. Rémazeilles and Ph. Refait (2007): "On the formation of β-FeOOH (akaganéite) in chloride-containing environments". Corrosion Science, volume 49, issue 2, pages 844-857. {{doi|10.1016/j.corsci.2006.06.003}}
  • Lepidocrocite, the γ polymorph, is commonly encountered as rust on the inside of steel water pipes and tanks.
  • Feroxyhyte (δ) is formed under the high pressure conditions of sea and ocean floors, being thermodynamically unstable with respect to the α polymorph (goethite) at surface conditions.

= Non-mineral =

  • Siderogel is a naturally occurring colloidal form of iron(III) oxide-hydroxide.

Goethite and lepidocrocite, both crystallizing in orthorhombic system, are the most common forms of iron(III) oxyhydroxide and the most important mineral carriers of iron in soils.

= Mineraloids =

Iron(III) oxyhydroxide is the main component of other minerals and mineraloids:

  • Ferrihydrite is an amorphous or nanocrystalline hydrated mineral, officially {{chem|FeOOH·1.8H|2|O}} but with widely variable hydration.

Properties

The color of iron(III) oxyhydroxide ranges from yellow through dark-brown to black, depending on the degree of hydration, particle size and shape, and crystal structure.

=Structure=

The crystal structure of β-{{chem|FeOOH}} (akaganeite) is that of hollandite or {{chem|BaMn|8|O|16}}. The unit cell is tetragonal with a = 1.048 and c = 0.3023 nm, and contains eight formula units of FeOOH. Its dimensions are about 500 × 50 × 50 nm. Twinning often produces particles with the shape of hexagonal stars.

=Chemistry=

On heating, β-{{chem|FeOOH}} decomposes and recrystallizes as α-{{chem|Fe|2|O|3}} (hematite).

Uses

Limonite, a mixture of various hydrates and polymorphs of ferric oxyhydroxide, is one of the three major iron ores, having been used since at least 2500 BC.MacEachern, Scott (1996): [http://www.panafprehistory.org/images/papers/IRON_AGE_BEGINNINGS_NORTH_OF_THE_MANDARA_MOUNTAINS_CAMEROON_AND_NIGERIA_Scott_MacEachern.pdf "Iron Age beginnings north of the Mandara Mountains, Cameroon and Nigeria"]. In In Pwiti, Gilbert and Soper, Robert (editors) (1996) Aspects of African Archaeology: Proceedings of the Tenth Pan-African Congress University of Zimbabwe Press, Harare, Zimbabwe, {{ISBN|978-0-908307-55-5}}, pages 489-496. Archived [https://web.archive.org/web/20120311184136/http://www.panafprehistory.org/images/papers/IRON_AGE_BEGINNINGS_NORTH_OF_THE_MANDARA_MOUNTAINS_CAMEROON_AND_NIGERIA_Scott_MacEachern.pdf here] on 2012-03-11.Diop-Maes, Louise Marie (1996): [http://www.ankhonline.com/revue/diop_lm_metallurgie_fer_afrique.htm "La question de l'Âge du fer en Afrique" ("The question of the Iron Age in Africa")]. Ankh, volume4/5, pages 278-303. [https://web.archive.org/web/20080125103929/http://www.ankhonline.com/revue/diop_lm_metallurgie_fer_afrique.htm Archived] on 2008-01-25.

Yellow iron oxide, or Pigment Yellow 42, is Food and Drug Administration (FDA) approved for use in cosmetics and is used in some tattoo inks.

Iron oxide-hydroxide is also used in aquarium water treatment as a phosphate binder.{{URL| http://www.reefkeeping.com/issues/2004-11/rhf/index.php |Iron Oxide Hydroxide (GFO) Phosphate Binders}}

Iron oxide-hydroxide nanoparticles have been studied as possible adsorbents for lead removal from aquatic media.Safoora Rahimi, Rozita M. Moattari, Laleh Rajabi, Ali Ashraf Derakhshan, and Mohammad Keyhani (2015): "Iron oxide/hydroxide (α,γ-FeOOH) nanoparticles as high potential adsorbents for lead removal from polluted aquatic media". Journal of Industrial and Engineering Chemistry, volume 23, pages 33-43. {{doi|10.1016/j.jiec.2014.07.039}}

= Medication =

Iron polymaltose is used in treatment of iron-deficiency anemia.

Production

Iron(III) oxyhydroxide precipitates from solutions of iron(III) salts at pH between 6.5 and 8.Tim Grundl and Jim Delwiche (1993): "Kinetics of ferric oxyhydroxide precipitation". Journal of Contaminant Hydrology, volume 14, issue 1, pages 71-87. {{doi|10.1016/0169-7722(93)90042-Q}}

Thus the oxyhydroxide can be obtained in the lab by reacting an iron(III) salt, such as ferric chloride or ferric nitrate, with sodium hydroxide:K. H. Gayer and Leo Woontner (1956): "The Solubility of Ferrous Hydroxide and Ferric Hydroxide in Acidic and Basic Media at 25°". Journal of Physical Chemistry, volume 60, issue 11, pages 1569–1571. {{doi|10.1021/j150545a021}}

:{{chem|FeCl|3}} + 3 NaOH → {{chem|Fe|(|OH|)|3}} + 3 NaCl

:{{chem|Fe(NO|3|)|3}} + 3 NaOH → {{chem|Fe|(|OH|)|3}} + 3 {{chem|NaNO|3}}

In fact, when dissolved in water, pure {{chem|FeCl|3}} will hydrolyze to some extent, yielding the oxyhydroxide and making the solution acidic:

:{{chem|FeCl|3}} + 2 {{chem|H|2|O}} ↔ {{chem|FeOOH}} + 3 {{chem|HCl}}

Therefore, the compound can also be obtained by the decomposition of acidic solutions of iron(III) chloride held near the boiling point for days or weeks:Egon Matijević and Paul Scheiner (1978): "Ferric hydrous oxide sols: III. Preparation of uniform particles by hydrolysis of Fe(III)-chloride, -nitrate, and -perchlorate solutions". Journal of Colloid and Interface Science, volume 63, issue 3, pages 509-524. {{doi|10.1016/S0021-9797(78)80011-3}}

: {{chem|FeCl|3}} + 2 {{chem|H|2|O}} → {{chem|Fe|OOH}}(s) + 3 {{chem|HCl}}(g)

(The same process applied to iron(III) nitrate {{chem|Fe|(|NO|3|)|3}} or perchlorate {{chem|Fe|(|ClO|4|)|3}} solutions yields instead particles of α-{{chem|Fe|2|O|3}}.)

Another similar route is the decomposition of iron(III) nitrate dissolved in stearic acid at about 120 °C.Dan Li, Xiaohui Wang, Gang Xiong, Lude Lu, Xujie Yang and Xin Wang (1997): "A novel technique to prepare ultrafine {{chem|Fe|2|O|3}} via hydrated iron(III) nitrate". Journal of Materials Science Letters volume 16, pages 493–495 {{doi|10.1023/A:1018528713566}}

The oxyhydroxide prepared from ferric chloride is usually the β polymorph (akaganeite), often in the form of thin needles.Donald O.

Whittemore and Donald Langmuir (1974): "Ferric Oxyhydroxide Microparticles in Water". Environmental Health Perspective, volume 9, pages 173-176. {{doi|10.1289/ehp.749173}}

The oxyhydroxide can also be produced by a solid-state transformation from iron(II) chloride tetrahydrate {{chem|FeCl|2}}·4{{chem|H|2|O}}.

The compound also readily forms when iron(II) hydroxide is exposed to air:

:4{{chem|Fe|(|OH|)|2}} + {{chem|O|2}} → 4 {{chem|FeOOH}} + 2 {{chem|H|2|O}}

The iron(II) hydroxide can also be oxidized by hydrogen peroxide in the presence of an acid:

:2{{chem|Fe|(|OH|)|2}} + {{chem|H|2|O|2}} → 2 {{chem|Fe|(|OH|)|3}}

See also

References

{{reflist}}

{{Iron compounds}}

{{Antianemic preparations}}

Category:Iron(III) compounds

Category:Hydroxides

Category:Transition metal oxides