isotopes of ruthenium

{{Short description|none}}

{{Infobox ruthenium isotopes}}

Naturally occurring ruthenium (44Ru) is composed of seven stable isotopes (of which two may in the future be found radioactive). Additionally, 27 radioactive isotopes have been discovered. Of these radioisotopes, the most stable are 106Ru, with a half-life of 373.59 days; 103Ru, with a half-life of 39.26 days and 97Ru, with a half-life of 2.9 days.

Twenty-four other radioisotopes have been characterized with atomic masses ranging from {{val|86.95|ul=Da}} (87Ru) to {{val|119.95|u=Da}} (120Ru). Most of these have half-lives that are less than five minutes, except 94Ru (half-life: 51.8 minutes), 95Ru (half-life: 1.643 hours), and 105Ru (half-life: 4.44 hours).

The primary decay mode before the most abundant isotope, 102Ru, is electron capture and the primary mode after is beta emission. The primary decay product before 102Ru is technetium and the primary product after is rhodium.

Because of the very high volatility of ruthenium tetroxide ({{chem|Ru|O|4}}), ruthenium isotopes with relatively short half-life are considered the next most hazardous airborne isotopes, after iodine-131, in case of release by a nuclear accident.Ronneau, C., Cara, J., & Rimski-Korsakov, A. (1995). [https://doi.org/10.1016/0265-931X(95)91633-F Oxidation-enhanced emission of ruthenium from nuclear fuel]. Journal of Environmental Radioactivity, 26(1), 63-70.Backman, U., Lipponen, M., Auvinen, A., Jokiniemi, J., & Zilliacus, R. (2004). [https://inis.iaea.org/collection/NCLCollectionStore/_Public/36/031/36031958.pdf Ruthenium behaviour in severe nuclear accident conditions]. Final report (No. NKS–100). Nordisk Kernesikkerhedsforskning.Beuzet, E., Lamy, J. S., Perron, H., Simoni, E., & Ducros, G. (2012). [https://www.academia.edu/download/50047444/Ruthenium_release_modelling_in_air_and_s20161101-1709-kv6n0y.pdf Ruthenium release modelling in air and steam atmospheres under severe accident conditions using the MAAP4 code]{{dead link|date=July 2022|bot=medic}}{{cbignore|bot=medic}}. Nuclear Engineering and Design, 246, 157-162. The two most important isotopes of ruthenium so released are those with the longest half-life: 103Ru (39.26 days) and 106Ru (373.59 days).

File:Ruthenium-96.png

List of isotopes

{{Anchor}}

{{Isotopes table

|symbol=Ru

|refs=NUBASE2020, AME2020 II

|notes=m, unc(), mass#, exen#, hl#, spin(), spin#, daughter-st, n, p, IT

}}

|-id=Ruthenium-85

| 85Ru

| style="text-align:right" | 44

| style="text-align:right" | 41

| 84.96712(54)#

| 1# ms{{br}}[> 400 ns]

|

|

| 3/2−#

|

|

|-id=Ruthenium-86

| 86Ru

| style="text-align:right" | 44

| style="text-align:right" | 42

| 85.95731(43)#

| 50# ms{{br}}[> 400 ns]

|

|

| 0+

|

|

|-id=Ruthenium-87

| 87Ru

| style="text-align:right" | 44

| style="text-align:right" | 43

| 86.95091(43)#

| 50# ms{{br}}[> 1.5 μs]

|

|

| 1/2−#

|

|

|-id=Ruthenium-88

| rowspan=2|88Ru

| rowspan=2 style="text-align:right" | 44

| rowspan=2 style="text-align:right" | 44

| rowspan=2|87.94166(32)#

| rowspan=2|1.5(3) s

| β+ (>96.4%)

| 88Tc

| rowspan=2|0+

| rowspan=2|

| rowspan=2|

|-

| β+, p (<3.6%)

| 87Mo

|-id=Ruthenium-89

| rowspan=2|89Ru

| rowspan=2 style="text-align:right" | 44

| rowspan=2 style="text-align:right" | 45

| rowspan=2|88.937338(26)

| rowspan=2|1.32(3) s

| β+ (96.7%)

| 89Tc

| rowspan=2|(9/2+)

| rowspan=2|

| rowspan=2|

|-

| β+, p (3.1%)

| 88Mo

|-id=Ruthenium-90

| 90Ru

| style="text-align:right" | 44

| style="text-align:right" | 46

| 89.9303444(40)

| 11.7(9) s

| β+

| 90Tc

| 0+

|

|

|-id=Ruthenium-91

| 91Ru

| style="text-align:right" | 44

| style="text-align:right" | 47

| 90.9267415(24)

| 8.0(4) s

| β+

| 91Tc

| (9/2+)

|

|

|-id=Ruthenium-91m

| rowspan=2 style="text-indent:1em" | 91mRuOrder of ground state and isomer is uncertain.

| rowspan=2 colspan="3" style="text-indent:2em" | −340(500) keV

| rowspan=2|7.6(8) s

| β+ (>99.9%)

| 91Tc

| rowspan=2|(1/2−)

| rowspan=2|

| rowspan=2|

|-

| β+, p (?%)

| 90Mo

|-id=Ruthenium-92

| 92Ru

| style="text-align:right" | 44

| style="text-align:right" | 48

| 91.9202344(29)

| 3.65(5) min

| β+

| 92Tc

| 0+

|

|

|-id=Ruthenium-92m

| style="text-indent:1em" | 92mRu

| colspan="3" style="text-indent:2em" | 2833.9(18) keV

| 100(8) ns

| IT

| 92Ru

| (8+)

|

|

|-id=Ruthenium-93

| 93Ru

| style="text-align:right" | 44

| style="text-align:right" | 49

| 92.9171044(22)

| 59.7(6) s

| β+

| 93Tc

| (9/2)+

|

|

|-id=Ruthenium-93m1

| rowspan=3 style="text-indent:1em" | 93m1Ru

| rowspan=3 colspan="3" style="text-indent:2em" | 734.40(10) keV

| rowspan=3|10.8(3) s

| β+ (78.0%)

| 93Tc

| rowspan=3|(1/2)−

| rowspan=3|

| rowspan=3|

|-

| IT (22.0%)

| 93Ru

|-

| β+, p (0.027%)

| 92Mo

|-id=Ruthenium-93m2

| style="text-indent:1em" | 93m2Ru

| colspan="3" style="text-indent:2em" | 2082.5(9) keV

| 2.30(7) μs

| IT

| 93Ru

| (21/2)+

|

|

|-id=Ruthenium-94

| 94Ru

| style="text-align:right" | 44

| style="text-align:right" | 50

| 93.9113429(34)

| 51.8(6) min

| β+

| 94Tc

| 0+

|

|

|-id=Ruthenium-94m

| style="text-indent:1em" | 94mRu

| colspan="3" style="text-indent:2em" | 2644.1(4) keV

| 67.5(28) μs

| IT

| 94Ru

| 8+

|

|

|-id=Ruthenium-95

| 95Ru

| style="text-align:right" | 44

| style="text-align:right" | 51

| 94.910404(10)

| 1.607(4) h

| β+

| 95Tc

| 5/2+

|

|

|-id=Ruthenium-96

| 96Ru

| style="text-align:right" | 44

| style="text-align:right" | 52

| 95.90758891(18)

| colspan=3 align=center|Observationally StableBelieved to undergo β+β+ decay to 96Mo with a half-life over 8×1019 years

| 0+

| 0.0554(14)

|

|-id=Ruthenium-97

| 97Ru

| style="text-align:right" | 44

| style="text-align:right" | 53

| 96.9075458(30)

| 2.8370(14) d

| β+

| 97Tc

| 5/2+

|

|

|-id=Ruthenium-98

| 98Ru

| style="text-align:right" | 44

| style="text-align:right" | 54

| 97.9052867(69)

| colspan=3 align=center|Stable

| 0+

| 0.0187(3)

|

|-id=Ruthenium-99

| 99Ru

| style="text-align:right" | 44

| style="text-align:right" | 55

| 98.90593028(37)

| colspan=3 align=center|Stable

| 5/2+

| 0.1276(14)

|

|-id=Ruthenium-100

| 100Ru

| style="text-align:right" | 44

| style="text-align:right" | 56

| 99.90421046(37)

| colspan=3 align=center|Stable

| 0+

| 0.1260(7)

|

|-id=Ruthenium-101

| 101RuFission product

| style="text-align:right" | 44

| style="text-align:right" | 57

| 100.90557309(44)

| colspan=3 align=center|Stable

| 5/2+

| 0.1706(2)

|

|-id=Ruthenium-101m

| style="text-indent:1em" | 101mRu

| colspan="3" style="text-indent:2em" | 527.56(10) keV

| 17.5(4) μs

| IT

| 101Ru

| 11/2−

|

|

|-id=Ruthenium-102

| 102Ru

| style="text-align:right" | 44

| style="text-align:right" | 58

| 101.90434031(45)

| colspan=3 align=center|Stable

| 0+

| 0.3155(14)

|

|-id=Ruthenium-103

| 103Ru

| style="text-align:right" | 44

| style="text-align:right" | 59

| 102.90631485(47)

| 39.245(8) d

| β

| 103Rh

| 3/2+

|

|

|-id=Ruthenium-103m

| style="text-indent:1em" | 103mRu

| colspan="3" style="text-indent:2em" | 238.2(7) keV

| 1.69(7) ms

| IT

| 103Ru

| 11/2−

|

|

|-id=Ruthenium-104

| 104Ru

| style="text-align:right" | 44

| style="text-align:right" | 60

| 103.9054253(27)

| colspan=3 align=center|Observationally StableBelieved to undergo ββ decay to 104Pd

| 0+

| 0.1862(27)

|

|-id=Ruthenium-105

| 105Ru

| style="text-align:right" | 44

| style="text-align:right" | 61

| 104.9077455(27)

| 4.439(11) h

| β

| 105Rh

| 3/2+

|

|

|-id=Ruthenium-105m

| style="text-indent:1em" | 105mRu

| colspan="3" style="text-indent:2em" | 20.606(14) keV

| 340(15) ns

| IT

| 105Ru

| 5/2+

|

|

|-id=Ruthenium-106

| 106Ru

| style="text-align:right" | 44

| style="text-align:right" | 62

| 105.9073282(58)

| 371.8(18) d

| β

| 106Rh

| 0+

|

|

|-id=Ruthenium-107

| 107Ru

| style="text-align:right" | 44

| style="text-align:right" | 63

| 106.9099698(93)

| 3.75(5) min

| β

| 107Rh

| (5/2)+

|

|

|-id=Ruthenium-108

| 108Ru

| style="text-align:right" | 44

| style="text-align:right" | 64

| 107.9101858(93)

| 4.55(5) min

| β

| 108Rh

| 0+

|

|

|-id=Ruthenium-109

| 109Ru

| style="text-align:right" | 44

| style="text-align:right" | 65

| 108.9133237(96)

| 34.4(2) s

| β

| 109Rh

| (5/2+)

|

|

|-id=Ruthenium-109m

| style="text-indent:1em" | 109mRu

| colspan="3" style="text-indent:2em" | 96.14(15) keV

| 680(30) ns

| IT

| 109Ru

| (5/2−)

|

|

|-id=Ruthenium-110

| 110Ru

| style="text-align:right" | 44

| style="text-align:right" | 66

| 109.9140385(96)

| 12.04(17) s

| β

| 110Rh

| 0+

|

|

|-id=Ruthenium-111

| 111Ru

| style="text-align:right" | 44

| style="text-align:right" | 67

| 110.917568(10)

| 2.12(7) s

| β

| 111Rh

| 5/2+

|

|

|-id=Ruthenium-112

| 112Ru

| style="text-align:right" | 44

| style="text-align:right" | 68

| 111.918807(10)

| 1.75(7) s

| β

| 112Rh

| 0+

|

|

|-id=Ruthenium-113

| 113Ru

| style="text-align:right" | 44

| style="text-align:right" | 69

| 112.922847(41)

| 0.80(5) s

| β

| 113Rh

| (1/2+)

|

|

|-id=Ruthenium-113m

| rowspan=2 style="text-indent:1em" | 113mRu

| rowspan=2 colspan="3" style="text-indent:2em" | 131(33) keV

| rowspan=2|510(30) ms

| β (?%)

| 113Rh

| rowspan=2|(7/2−)

| rowspan=2|

| rowspan=2|

|-

| IT (?%)

| 113Ru

|-id=Ruthenium-114

| 114Ru

| style="text-align:right" | 44

| style="text-align:right" | 70

| 113.9246144(38)

| 0.54(3) s

| β

| 114Rh

| 0+

|

|

|-id=Ruthenium-115

| 115Ru

| style="text-align:right" | 44

| style="text-align:right" | 71

| 114.929033(27)

| 318(19) ms

| β

| 115Rh

| (1/2+)

|

|

|-id=Ruthenium-115m

| rowspan=2 style="text-indent:1em" | 115mRu

| rowspan=2 colspan="3" style="text-indent:2em" | 82(6) keV

| rowspan=2|76(6) ms

| β (?%)

| 115Rh

| rowspan=2|(7/2−)

| rowspan=2|

| rowspan=2|

|-

| IT (?%)

| 115Ru

|-id=Ruthenium-116

| 116Ru

| style="text-align:right" | 44

| style="text-align:right" | 72

| 115.9312192(40)

| 204(6) ms

| β

| 116Rh

| 0+

|

|

|-id=Ruthenium-117

| 117Ru

| style="text-align:right" | 44

| style="text-align:right" | 73

| 116.93614(47)

| 151(3) ms

| β

| 117Rh

| 3/2+#

|

|

|-id=Ruthenium-117m

| style="text-indent:1em" | 117mRu

| colspan="3" style="text-indent:2em" | 185.0(4) keV

| 2.49(6) μs

| IT

| 117Ru

| 7/2−#

|

|

|-id=Ruthenium-118

| 118Ru

| style="text-align:right" | 44

| style="text-align:right" | 74

| 117.93881(22)#

| 99(3) ms

| β

| 118Rh

| 0+

|

|

|-id=Ruthenium-119

| 119Ru

| style="text-align:right" | 44

| style="text-align:right" | 75

| 118.94409(32)#

| 69.5(20) ms

| β

| 119Rh

| 3/2+#

|

|

|-id=Ruthenium-119m

| style="text-indent:1em" | 119mRu

| colspan="3" style="text-indent:2em" | 227.1(7) keV

| 384(22) ns

| IT

| 119Ru

|

|

|

|-id=Ruthenium-120

| 120Ru

| style="text-align:right" | 44

| style="text-align:right" | 76

| 119.94662(43)#

| 45(2) ms

| β

| 120Rh

| 0+

|

|

|-id=Ruthenium-121

| 121Ru

| style="text-align:right" | 44

| style="text-align:right" | 77

| 120.95210(43)#

| 29(2) ms

| β

| 121Rh

| 3/2+#

|

|

|-id=Ruthenium-122

| 122Ru

| style="text-align:right" | 44

| style="text-align:right" | 78

| 121.95515(54)#

| 25(1) ms

| β

| 122Rh

| 0+

|

|

|-id=Ruthenium-123

| 123Ru

| style="text-align:right" | 44

| style="text-align:right" | 79

| 122.96076(54)#

| 19(2) ms

| β

| 123Rh

| 3/2+#

|

|

|-id=Ruthenium-124

| 124Ru

| style="text-align:right" | 44

| style="text-align:right" | 80

| 123.96394(64)#

| 15(3) ms

| β

| 124Rh

| 0+

|

|

|-id=Ruthenium-125

| 125Ru

| style="text-align:right" | 44

| style="text-align:right" | 81

| 124.96954(32)#

| 12# ms{{br}}[> 550 ns]

|

|

| 3/2+#

|

|

{{Isotopes table/footer}}

Alleged ruthenium-106 leak

In September 2017 an estimated amount of 100 to 300 TBq (0.3 to 1 g) of 106Ru was released in Russia, probably in the Ural region. It was, after ruling out release from a reentering satellite, concluded that the source was either in nuclear fuel cycle facilities or radioactive source production. In France levels up to 0.036mBq/m3 of air were measured. It was estimated that for distances of the order of a few tens of kilometres, contamination levels may have exceeded the limits for non-dairy foodstuffs.[https://www.irsn.fr/EN/newsroom/News/Documents/IRSN_Information-Report_Ruthenium-106-in-europe_20171109.pdf] Detection of ruthenium 106 in France and in Europe, IRSN France (9 Nov 2017)

See also

Daughter products other than ruthenium

References

{{reflist}}

  • Isotope masses from:
  • {{NUBASE 2003}}
  • Isotopic compositions and standard atomic masses from:
  • {{CIAAW2003}}
  • {{CIAAW 2005}}
  • Half-life, spin, and isomer data selected from the following sources.
  • {{NUBASE 2003}}
  • {{NNDC}}
  • {{CRC85|chapter=11}}

{{Navbox element isotopes}}

Category:Ruthenium

Ruthenium