jacket matrix

{{Short description|Square matrix that is a generalization of the Hadamard matrix}}

In mathematics, a jacket matrix is a square symmetric matrix A= (a_{ij}) of order n if its entries are non-zero and real, complex, or from a finite field, and File:Had_otr_jac.png

:\ AB=BA=I_n

where In is the identity matrix, and

:\ B ={1 \over n}(a_{ij}^{-1})^T.

where T denotes the transpose of the matrix.

In other words, the inverse of a jacket matrix is determined by its element-wise or block-wise inverse. The definition above may also be expressed as:

:\forall u,v \in \{1,2,\dots,n\}:~a_{iu},a_{iv} \neq 0, ~~~~ \sum_{i=1}^n a_{iu}^{-1}\,a_{iv} =

\begin{cases}

n, & u = v\\

0, & u \neq v

\end{cases}

The jacket matrix is a generalization of the Hadamard matrix; it is a diagonal block-wise inverse matrix.

Motivation

class="wikitable" style="margin:auto;"
n.... −2, −1, 0 1, 2,.....logarithm
2n....\ {1 \over 4}, {1 \over 2}, 1, 2, 4, ...series

As shown in the table, i.e. in the series, for example with n=2, forward: 2^2 = 4 , inverse : (2^2)^{-1}={1 \over 4} , then, 4*{1\over 4}=1. That is, there exists an element-wise inverse.

Example 1.

:

A = \left[ \begin{array}{rrrr} 1 & 1 & 1 & 1 \\ 1 & -2 & 2 & -1 \\ 1 & 2 & -2 & -1 \\ 1 & -1 & -1 & 1 \\ \end{array} \right],:B ={1 \over 4} \left[

\begin{array}{rrrr} 1 & 1 & 1 & 1 \\[6pt] 1 & -{1 \over 2} & {1 \over 2} & -1 \\[6pt]

1 & {1 \over 2} & -{1 \over 2} & -1 \\[6pt] 1 & -1 & -1 & 1\\[6pt] \end{array}

\right].

or more general

:

A = \left[ \begin{array}{rrrr} a & b & b & a \\ b & -c & c & -b \\ b & c & -c & -b \\

a & -b & -b & a \end{array} \right], : B = {1 \over 4} \left[ \begin{array}{rrrr} {1 \over a} & {1 \over b} & {1 \over b} & {1 \over a} \\[6pt] {1 \over b} & -{1 \over c} & {1 \over c} & -{1 \over b} \\[6pt] {1 \over b} & {1 \over c} & -{1 \over c} & -{1 \over b} \\[6pt] {1 \over a} & -{1 \over b} & -{1 \over b} & {1 \over a} \end{array} \right],

Example 2.

For m x m matrices,

\mathbf {A_j},

\mathbf {A_j}=\mathrm{diag}(A_1, A_2,.. A_n )

denotes an mn x mn block diagonal Jacket matrix.

:

J_4 = \left[ \begin{array}{rrrr} I_2 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\

0 & 0 & 0 & I_2 \end{array} \right], \ J^T_4 J_4 =J_4 J^T_4=I_4.

Example 3.

Euler's formula:

:e^{i \pi} + 1 = 0, e^{i \pi} =\cos{ \pi} +i\sin{\pi}=-1 and e^{-i \pi} =\cos{ \pi} - i\sin{\pi}=-1.

Therefore,

:e^{i \pi}e^{-i \pi}=(-1)(\frac{1}{-1})=1.

Also,

:y=e^{x}

:\frac{dy}{dx}=e^{x},\frac{dy}{dx}\frac{dx}{dy}=e^{x}\frac{1}{e^{x}}=1.

Finally,

A·B = B·A = I

Example 4.

Consider [\mathbf {A}]_N be 2x2 block matrices of order N=2p

:

[\mathbf {A}]_N= \left[ \begin{array}{rrrr} \mathbf {A}_0 & \mathbf {A}_1 \\ \mathbf {A}_1 & \mathbf {A}_0 \\ \end{array} \right],.

If [\mathbf {A}_0]_p and [\mathbf {A}_1]_p are pxp Jacket matrix, then [A]_N is a block circulant matrix if and only if \mathbf {A}_0 \mathbf {A}_1^{rt}+\mathbf {A}_1^{rt}\mathbf {A}_0, where rt denotes the reciprocal transpose.

Example 5.

Let \mathbf {A}_0= \left[ \begin{array}{rrrr} -1 & 1 \\ 1 & 1\\ \end{array} \right], and \mathbf {A}_1= \left[ \begin{array}{rrrr} -1 & -1 \\ -1 & 1\\ \end{array} \right],, then the matrix [\mathbf {A}]_N is given by

:

[\mathbf {A}]_4= \left[ \begin{array}{rrrr} \mathbf {A}_0 & \mathbf {A}_1 \\ \mathbf {A}_0 & \mathbf {A}_1 \\ \end{array} \right]

=\left[ \begin{array}{rrrr} -1 & 1 & -1 & -1\\ 1 & 1 & -1 & 1 \\ -1 & 1 & -1 & -1 \\ 1 & 1 & -1 & 1 \\ \end{array} \right],,

:[\mathbf {A}]_4

\left[ \begin{array}{rrrr} U & C & A & G\\ \end{array} \right]^T\otimes\left[ \begin{array}{rrrr} U & C & A & G\\ \end{array} \right]\otimes\left[ \begin{array}{rrrr} U & C & A & G\\ \end{array} \right]^T,

where U, C, A, G denotes the amount of the DNA nucleobases and the matrix [\mathbf {A}]_4 is the block circulant Jacket matrix which leads to the principle of the Antagonism with Nirenberg Genetic Code matrix.

References

[1] Moon Ho Lee, "The Center Weighted Hadamard Transform", IEEE Transactions on Circuits Syst. Vol. 36, No. 9, PP. 1247–1249, Sept. 1989.

[2] Kathy Horadam, Hadamard Matrices and Their Applications, Princeton University Press, UK, Chapter 4.5.1: The jacket matrix construction, PP. 85–91, 2007.

[3] Moon Ho Lee, Jacket Matrices: Constructions and Its Applications for Fast Cooperative Wireless Signal Processing, LAP LAMBERT Publishing, Germany, Nov. 2012.

[4] Moon Ho Lee, et. al., "MIMO Communication Method and System using the Block Circulant Jacket Matrix," US patent, no. US 009356671B1, May, 2016.

[5] S. K. Lee and M. H. Lee, “The COVID-19 DNA-RNA Genetic Code Analysis Using Information Theory of Double Stochastic Matrix,” IntechOpen, Book Chapter, April 17, 2022. [Available in Online: https://www.intechopen.com/chapters/81329].