kinetic inductance detector
File:Argonne Aluminum KID Tin absorber.jpg kinetic inductance detectors with tin absorbers. Image credit: Argonne National Lab.]]
The kinetic inductance detector (KID) — also known as a microwave kinetic inductance detector (MKID) — is a type of superconducting photon detector capable of counting single photons whilst simultaneously measuring their energy and arrival time to high precision. They were first developed by scientists at the California Institute of Technology and the Jet Propulsion Laboratory in 2003.{{cite journal | last1 = Day | first1 = P. K. | last2 = LeDuc | first2 = H. G. | last3 = Mazin | first3 = B. A. | last4 = Vayonakis | first4 = A. | last5 = Zmuidzinas | first5 = J. | year = 2003 | title = A broadband superconducting detector suitable for use in large arrays | journal = Nature | volume = 425 | issue = 6960| pages = 817–821 | doi = 10.1038/nature02037 |bibcode = 2003Natur.425..817D | pmid=14574407| s2cid = 4414046 }} These devices operate at cryogenic temperatures, typically below 1 kelvin. They are being developed for high-sensitivity astronomical detection for frequencies ranging from the far-infrared to X-rays.
Principle of operation
Photons incident on a strip of superconducting material break Cooper pairs and create excess quasiparticles. The kinetic inductance of the superconducting strip is inversely proportional to the density of Cooper pairs, and thus the kinetic inductance increases upon photon absorption. This inductance is combined with a capacitor to form a microwave resonator whose resonant frequency changes with the absorption of photons. This resonator-based readout is useful for developing large-format detector arrays, as each KID can be addressed by a single microwave tone and many detectors can be measured using a single broadband microwave channel, a technique known as frequency-division multiplexing.
Applications
KIDs are being developed for a range of astronomy applications, including millimeter and submillimeter wavelength detection
at the Caltech Submillimeter Observatory,{{Cite book |doi = 10.1117/12.857751|chapter = MUSIC for sub/Millimeter astrophysics|title = Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V|volume = 7741|pages = 77410F|year = 2010|last1 = Maloney|first1 = Philip R.|last2 = Czakon|first2 = Nicole G.|last3 = Day|first3 = Peter K.|last4 = Downes|first4 = Thomas P.|last5 = Duan|first5 = Ran|last6 = Gao|first6 = Jiansong|last7 = Glenn|first7 = Jason|last8 = Golwala|first8 = Sunil R.|last9 = Hollister|first9 = Matt I.|last10 = Leduc|first10 = Henry G.|last11 = Mazin|first11 = Benjamin A.|last12 = McHugh|first12 = Sean G.|last13 = Noroozian|first13 = Omid|last14 = Nguyen|first14 = Hien T.|last15 = Sayers|first15 = Jack|last16 = Schlaerth|first16 = James A.|last17 = Siegel|first17 = Seth|last18 = Vaillancourt|first18 = John E.|last19 = Vayonakis|first19 = Anastasios|last20 = Wilson|first20 = Philip|last21 = Zmuidzinas|first21 = Jonas| publisher=Society of Photo-Optical Instrumentation Engineers (SPIE) | isbn=9780819482310 | s2cid=20865654 | url=https://resolver.caltech.edu/CaltechAUTHORS:20161101-104305650 | editor-first1=Wayne S. | editor-first2=Jonas | editor-last1=Holland | editor-last2=Zmuidzinas |chapter-url = https://authors.library.caltech.edu/71659/1/77410F_1.pdf}} the Atacama Pathfinder Experiment (APEX) on the Llano de Chajnantor Observatory,{{Cite journal |bibcode = 2010stt..conf..262H|title = Development of a MKID Camera for APEX|journal = Twenty-First International Symposium on Space Terahertz Technology|pages = 262|last1 = Heyminck|first1 = S.|last2 = Klein|first2 = B.|last3 = Güsten|first3 = R.|last4 = Kasemann|first4 = C.|last5 = Baryshev|first5 = A.|last6 = Baselmans|first6 = J.|last7 = Yates|first7 = S.|last8 = Klapwijk|first8 = T. M.|year = 2010}} the CCAT Observatory, the Large Millimeter Telescope, and the IRAM 30-m telescope.{{cite journal | last1 = Monfardini | first1 = A. | display-authors = etal | year = 2011 | title = A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope | journal = The Astrophysical Journal Supplement Series | volume = 194 | issue = 2| page = 24 | doi = 10.1088/0067-0049/194/2/24 |arxiv = 1102.0870 |bibcode = 2011ApJS..194...24M | s2cid = 59407170 }} They are also being developed for optical and near-infrared detection at the Palomar Observatory.{{cite journal | last1 = Mazin | first1 = B. A. | last2 = O'Brien | first2 = K. | last3 = McHugh | first3 = S. | last4 = Bumble | first4 = B. | last5 = Moore | first5 = D. | last6 = Golwala | first6 = S. | last7 = Zmuidzinas | first7 = J. | editor-first1 = Ian S. | editor-first2 = Suzanne K. | editor-first3 = Hideki | editor-last1 = McLean | editor-last2 = Ramsay | editor-last3 = Takami | year = 2010 | title = ARCONS: a highly multiplexed superconducting optical to near-IR camera | journal = Proc. SPIE | volume = 7735 | page = 773518 | doi = 10.1117/12.856440 |arxiv = 1007.0752 | series = Ground-based and Airborne Instrumentation for Astronomy III | bibcode = 2010SPIE.7735E..18M | s2cid = 38654668 }} KIDs have also flown on two balloon-borne telescopes, OLIMPO{{Cite journal |last1=Masi |first1=S. |last2=de Bernardis |first2=P. |last3=Paiella |first3=A. |last4=Piacentini |first4=F. |last5=Lamagna |first5=L. |last6=Coppolecchia |first6=A. |last7=Ade |first7=P.A.R. |last8=Battistelli |first8=E.S. |last9=Castellano |first9=M.G. |last10=Colantoni |first10=I. |last11=Columbro |first11=F. |last12=D'Alessandro |first12=G. |last13=Petris |first13=M. De |last14=Gordon |first14=S. |last15=Magneville |first15=C. |date=2019-07-01 |title=Kinetic Inductance Detectors for the OLIMPO experiment: in-flight operation and performance |url=https://iopscience.iop.org/article/10.1088/1475-7516/2019/07/003 |journal=Journal of Cosmology and Astroparticle Physics |volume=2019 |issue=7 |pages=003 |doi=10.1088/1475-7516/2019/07/003 |issn=1475-7516|arxiv=1902.08993 |bibcode=2019JCAP...07..003M }} in 2018 and BLAST-TNG{{Cite web |title=Science – BLAST The Experiment |url=https://sites.northwestern.edu/blast/science/ |access-date=2023-12-17 |website=sites.northwestern.edu}} in 2020. They are also foreseen for the spectrometers{{Cite arXiv |last1=Foote |first1=Logan |last2=Albert |first2=Chris |last3=Baselmans |first3=Jochem |last4=Beyer |first4=Andrew |last5=Cothard |first5=Nicholas |last6=Day |first6=Peter |last7=Hailey-Dunsheath |first7=Steven |last8=Echternach |first8=Pierre |last9=Janssen |first9=Reinier |last10=Kane |first10=Elijah |last11=Leduc |first11=Henry |last12=Liu |first12=Lun-Jun |last13=Nguyen |first13=Hien |last14=Perido |first14=Joanna |last15=Glenn |first15=Jason |date=2023 |title=High-sensitivity Kinetic Inductance Detector Arrays for the Probe Far-Infrared Mission for Astrophysics |class=astro-ph.IM |eprint=2311.02175 }} of the planned PRobe far-Infrared Mission for Astrophysics (PRIMA) telescope, which NASA selected as one of two potential future space telescopes.{{Cite web |last1=Taveau |first1=Jessica |last2=Fisher |first2=Alise |date=2024-10-03 |title=NASA Establishes New Class of Astrophysics Missions, Selects Studies - NASA |url=https://www.nasa.gov/news-release/nasa-establishes-new-class-of-astrophysics-missions-selects-studies/ |access-date=2024-10-16 |website=nasa.gov |language=en-US}} KIDs have also gained popularity as a more compact, lower cost, and less complex alternative to transition edge sensors.{{cite journal |last1=Zmuidzinas |first1=Jonas |title=Superconducting Microresonators: Physics and Applications |journal=Annual Review of Condensed Matter Physics |date=March 2012 |volume=3 |pages=169–214 |doi=10.1146/annurev-conmatphys-020911-125022 |url=https://www.annualreviews.org/doi/abs/10.1146/annurev-conmatphys-020911-125022 |access-date=23 July 2020}}
See also
References
{{Reflist}}
External links
- [https://www.sron.nl/technology-kinetic-inductance-detectors SRON website on kinetic inductance detectors]{{Dead link|date=August 2023 |bot=InternetArchiveBot |fix-attempted=yes }}
- [http://www.physics.ucsb.edu/~bmazin/Mazin_Lab/MKIDs.html Research group of Prof. B. Mazin at UC Santa Barbara] {{Webarchive|url=https://web.archive.org/web/20101203085532/http://www.physics.ucsb.edu/~bmazin/Mazin_Lab/MKIDs.html |date=2010-12-03 }}
- [https://www.youtube.com/watch?v=MAHkYROmriY YouTube video on kinetic inductance from MIT]
- {{cite journal | last1=Champlin | first1=K.S. | last2=Armstrong | first2=D.B. | last3=Gunderson | first3=P.D. | title=Charge carrier inertia in semiconductors | journal=Proceedings of the IEEE | publisher=Institute of Electrical and Electronics Engineers (IEEE) | volume=52 | issue=6 | year=1964 | issn=0018-9219 | doi=10.1109/proc.1964.3049 | pages=677–685}}