large-scale brain network
{{Short description|Collections of brain regions working together}}
Large-scale brain networks (also known as intrinsic brain networks) are collections of widespread brain regions showing functional connectivity by statistical analysis of the fMRI BOLD signal{{cite journal|last1=Riedl|first1=Valentin|last2=Utz|first2=Lukas|last3=Castrillón|first3=Gabriel|last4=Grimmer|first4=Timo|last5=Rauschecker|first5=Josef P.|last6=Ploner|first6=Markus|last7=Friston|first7=Karl J.|last8=Drzezga|first8=Alexander|last9=Sorg|first9=Christian|title=Metabolic connectivity mapping reveals effective connectivity in the resting human brain|journal=PNAS|date=January 12, 2016|volume=113|issue=2|pages=428–433|doi=10.1073/pnas.1513752113|pmid=26712010|pmc=4720331|bibcode=2016PNAS..113..428R|doi-access=free}} or other recording methods such as EEG,{{Cite journal|last1=Foster|first1=Brett L.|last2=Parvizi|first2=Josef|date=2012-03-01|title=Resting oscillations and cross-frequency coupling in the human posteromedial cortex|journal=NeuroImage|volume=60|issue=1|pages=384–391|doi=10.1016/j.neuroimage.2011.12.019|pmid=22227048|issn=1053-8119|pmc=3596417}} PET{{Cite journal|last1=Buckner|first1=Randy L.|last2=Andrews-Hanna|first2=Jessica R.|last3=Schacter|first3=Daniel L.|date=2008|title=The Brain's Default Network|journal=Annals of the New York Academy of Sciences|language=en|volume=1124|issue=1|pages=1–38|doi=10.1196/annals.1440.011|pmid=18400922|issn=1749-6632|bibcode=2008NYASA1124....1B|s2cid=3167595}} and MEG.{{Cite journal|last1=Morris|first1=Peter G.|last2=Smith|first2=Stephen M.|last3=Barnes|first3=Gareth R.|last4=Stephenson|first4=Mary C.|last5=Hale|first5=Joanne R.|last6=Price|first6=Darren|last7=Luckhoo|first7=Henry|last8=Woolrich|first8=Mark|last9=Brookes|first9=Matthew J.|date=2011-10-04|title=Investigating the electrophysiological basis of resting state networks using magnetoencephalography|journal=Proceedings of the National Academy of Sciences|language=en|volume=108|issue=40|pages=16783–16788|doi=10.1073/pnas.1112685108|issn=0027-8424|pmid=21930901|pmc=3189080|bibcode=2011PNAS..10816783B|doi-access=free}} An emerging paradigm in neuroscience is that cognitive tasks are performed not by individual brain regions working in isolation but by networks consisting of several discrete brain regions that are said to be "functionally connected". Functional connectivity networks may be found using algorithms such as cluster analysis, spatial independent component analysis (ICA), seed based, and others.{{cite journal|last1=Petersen|first1=Steven|last2=Sporns|first2=Olaf|title=Brain Networks and Cognitive Architectures|journal=Neuron|date=October 2015|volume=88|issue=1|pages=207–219|doi=10.1016/j.neuron.2015.09.027|pmid=26447582|pmc=4598639 }} Synchronized brain regions may also be identified using long-range synchronization of the EEG, MEG, or other dynamic brain signals.{{cite journal|last1=Bressler|first1=Steven L.|last2=Menon|first2=Vinod|s2cid=5967761|title=Large scale brain networks in cognition: emerging methods and principles|journal=Trends in Cognitive Sciences|date=June 2010|volume=14|issue=6|pages=233–290|doi=10.1016/j.tics.2010.04.004|url=http://www.cell.com/trends/cognitive-sciences/issue?pii=S1364-6613(10)X0005-5|accessdate=24 January 2016|pmid=20493761|url-access=subscription}}
The set of identified brain areas that are linked together in a large-scale network varies with cognitive function.{{cite journal|last1=Bressler|first1=Steven L.|title=Neurocognitive networks|journal=Scholarpedia|volume=3|issue=2|pages=1567|doi=10.4249/scholarpedia.1567|year=2008|bibcode=2008SchpJ...3.1567B|doi-access=free}} When the cognitive state is not explicit (i.e., the subject is at "rest"), the large-scale brain network is a resting state network (RSN). As a physical system with graph-like properties, a large-scale brain network has both nodes and edges and cannot be identified simply by the co-activation of brain areas. In recent decades, the analysis of brain networks was made feasible by advances in imaging techniques as well as new tools from graph theory and dynamical systems.
The Organization for Human Brain Mapping has created the Workgroup for HArmonized Taxonomy of NETworks (WHATNET) group to work towards a consensus regarding network nomenclature.{{Cite journal |last=Uddin |first=Lucina |date=2022-10-10 |title=A Brain Network by Any Other Name |url=https://doi.org/10.1162/jocn_a_01925 |journal=Journal of Cognitive Neuroscience |volume=2022 |issue=10|pages=363–364 |doi=10.1162/jocn_a_01925 |pmid=36223250 |s2cid=252844955 |url-access=subscription }} WHATNET conducted a survey in 2021 which showed a large degree of agreement about the name and topography of three networks: the "somato network", the "default network" and the "visual network", while other networks had less agreement. Several issues make the work of creating a common atlas for networks difficult: some of these issues are the variability of spatial and time scales, variability across individuals, and the dynamic nature of some networks.{{cite journal|last1=Uddin|first1=LQ|last2=Betzel|first2=Richard F.|last3=Cohen|first3=Jessica R.|last4=Damoiselastx|first4=Jessica S.|last5=De Brigard|first5=Felipe|last6=Eickhoff|first6=Simon B.|last7=Fornito|first7=Alex|last8=Gratton|first8=Caterina|last9=Gordon|first9=Evan M.|last10=Laird|first10=Angela R.|last11=Larson-Prior|first11=Linda|last12=McIntosh|first12=A. Randal|last13=Nickerson|first13=Lisa D.|last14=Pessoa|first14=Luiz|last15=Pinho|first15=Ana Luísa|last16=Poldrack|first16=Russell A.|last17=Razi|first17=Adeel|last18=Sadaghiani|first18=Sepideh|last19=Shine|first19=James M.|last20=Yendiki|first20=Anastasia|last21=Yeo|first21=BTT|last22=Spreng|first22=RN|title=Controversies and progress on standardization of large-scale brain network nomenclature|journal=Network Neuroscience|date=October 2023|volume=7|issue=3|pages=864–903|doi=10.1162/netn_a_00323|pmid=37781138 |pmc=10473266}}
Some large-scale brain networks are identified by their function and provide a coherent framework for understanding cognition by offering a neural model of how different cognitive functions emerge when different sets of brain regions join together as self-organized coalitions. The number and composition of the coalitions will vary with the algorithm and parameters used to identify them.{{cite journal|last1=Abou Elseoud|first1=Ahmed|last2=Littow|first2=Harri|last3=Remes|first3=Jukka|last4=Starck|first4=Tuomo|last5=Nikkinen|first5=Juha|last6=Nissilä|first6=Juuso|last7=Timonen|first7=Markku|last8=Tervonen|first8=Osmo|last9=Kiviniemi|first9=Vesa|title=Group-ICA Model Order Highlights Patterns of Functional Brain Connectivity|journal= Frontiers in Systems Neuroscience|date=2011-06-03|volume=5|pages=37|doi=10.3389/fnsys.2011.00037|pmid=21687724|pmc=3109774 |doi-access=free}} In one model, there is only the default mode network and the task-positive network, but most current analyses show several networks, from a small handful to 17. The most common and stable networks are enumerated below. The regions participating in a functional network may be dynamically reconfigured.{{cite journal|last1=Bassett|first1=Daniella|last2=Bertolero|first2=Max|title=How Matter Becomes Mind|journal=Scientific American|date=July 2019|volume=321|issue=1|page=32|pmid=39010450 |url=https://www.scientificamerican.com/|accessdate=23 June 2019}}
Disruptions in activity in various networks have been implicated in neuropsychiatric disorders such as depression, Alzheimer's, autism spectrum disorder, schizophrenia, ADHD{{cite journal |last1=Griffiths |first1=Kristi R. |last2=Braund |first2=Taylor A. |last3=Kohn |first3=Michael R. |last4=Clarke |first4=Simon |last5=Williams |first5=Leanne M. |last6=Korgaonkar |first6=Mayuresh S. |title=Structural brain network topology underpinning ADHD and response to methylphenidate treatment |journal=Translational Psychiatry |date=2 March 2021 |volume=11 |issue=1 |page=150 |doi=10.1038/s41398-021-01278-x | pmc=7925571 |pmid=33654073 }} and bipolar disorder.{{Cite journal|url=https://www.researchgate.net/publication/51639686|title=Large-scale brain networks and psychopathology: A unifying triple network model|last=Menon|first=Vinod|s2cid=26653572|journal=Trends in Cognitive Sciences|date=2011-09-09|volume=15|issue=10|pages=483–506|doi=10.1016/j.tics.2011.08.003|pmid=21908230}}
Commonly identified networks
File:Heine2012x3010.png activity through independent component analysis]]
Because brain networks can be identified at various different resolutions and with various different neurobiological properties, there is currently no universal atlas of brain networks that fits all circumstances.{{cite journal|last1=Eickhoff|first1=SB|last2=Yeo|first2=BTT|last3=Genon|first3=S|title=Imaging-based parcellations of the human brain.|journal=Nature Reviews. Neuroscience|date=November 2018|volume=19|issue=11|pages=672–686|doi=10.1038/s41583-018-0071-7|pmid=30305712|hdl=2268/229950 |s2cid=52954265|url=http://juser.fz-juelich.de/record/856633/files/Eickhoff_Yeo_Genon_NRN_MainManuscriptInclFigures.pdf}} Uddin, Yeo, and Spreng proposed in 2019{{cite journal|last1=Uddin|first1=LQ|last2=Yeo|first2=BTT|last3=Spreng|first3=RN|title=Towards a Universal Taxonomy of Macro-scale Functional Human Brain Networks.|journal=Brain Topography|date=November 2019|volume=32|issue=6|pages=926–942|doi=10.1007/s10548-019-00744-6|pmid=31707621|pmc=7325607}} that the following six networks should be defined as core networks based on converging evidences from multiple studies{{cite journal|last1=Doucet|first1=GE|last2=Lee|first2=WH|last3=Frangou|first3=S|title=Evaluation of the spatial variability in the major resting-state networks across human brain functional atlases.|journal=Human Brain Mapping|date=2019-10-15|volume=40|issue=15|pages=4577–4587|doi=10.1002/hbm.24722|pmid=31322303|pmc=6771873}}{{cite journal|last1=Smith|first1=SM|last2=Fox|first2=PT|last3=Miller|first3=KL|last4=Glahn|first4=DC|last5=Fox|first5=PM|last6=Mackay|first6=CE|last7=Filippini|first7=N|last8=Watkins|first8=KE|last9=Toro|first9=R|last10=Laird|first10=AR|last11=Beckmann|first11=CF|title=Correspondence of the brain's functional architecture during activation and rest.|journal=Proceedings of the National Academy of Sciences of the United States of America|date=2009-08-04|volume=106|issue=31|pages=13040–5|doi=10.1073/pnas.0905267106|pmid=19620724|pmc=2722273|bibcode=2009PNAS..10613040S|doi-access=free}} to facilitate communication between researchers.
= Default mode (medial frontoparietal) =
{{Main|Default mode network}}
- The default mode network is active when an individual is awake and at rest. It preferentially activates when individuals focus on internally-oriented tasks such as daydreaming, envisioning the future, retrieving memories, and theory of mind. It is negatively correlated with brain systems that focus on external visual signals. It is the most widely researched network.{{Cite journal|date=2012-08-15|title=The serendipitous discovery of the brain's default network|journal=NeuroImage|language=en|volume=62|issue=2|pages=1137–1145|doi=10.1016/j.neuroimage.2011.10.035|pmid=22037421|issn=1053-8119|last1=Buckner|first1=Randy L.|s2cid=9880586}}
{{cite journal|last1=Yuan|first1=Rui|last2=Di|first2=Xin|last3=Taylor|first3=Paul A.|last4=Gohel|first4=Suril|last5=Tsai|first5=Yuan-Hsiung|last6=Biswal|first6=Bharat B.|title=Functional topography of the thalamocortical system in human|journal=Brain Structure and Function|date=30 April 2015|doi=10.1007/s00429-015-1018-7|pmid=25924563|pmc=6363530|volume=221|issue=4|pages=1971–1984}}{{cite journal|last1=Bell|first1=Peter T.|last2=Shine|first2=James M.|title=Estimating Large-Scale Network Convergence in the Human Functional Connectome|journal=Brain Connectivity|date=2015-11-09|volume=5|issue=9|doi=10.1089/brain.2015.0348|pmid=26005099|pages=565–74}}{{cite journal|last1=Heine|first1=Lizette|last2=Soddu|first2=Andrea|last3=Gomez|first3=Francisco|last4=Vanhaudenhuyse|first4=Audrey|last5=Tshibanda|first5=Luaba|last6=Thonnard|first6=Marie|last7=Charland-Verville|first7=Vanessa|last8=Kirsch|first8=Murielle|last9=Laureys|first9=Steven|last10=Demertzi|first10=Athena|title=Resting state networks and consciousness. Alterations of multiple resting state network connectivity in physiological, pharmacological and pathological consciousness states.|journal=Frontiers in Psychology|date=2012|volume=3|pages=295|doi=10.3389/fpsyg.2012.00295|pmid=22969735|pmc=3427917|doi-access=free}}{{cite journal|last1=Yeo|first1=B. T. Thomas|last2=Krienen|first2=Fenna M.|last3=Sepulcre|first3=Jorge|last4=Sabuncu|first4=Mert R.|last5=Lashkari|first5=Danial|last6=Hollinshead|first6=Marisa|last7=Roffman|first7=Joshua L.|last8=Smoller|first8=Jordan W.|last9=Zöllei|first9=Lilla|last10=Polimeni|first10=Jonathan R.|last11=Fischl|first11=Bruce|last12=Liu|first12=Hesheng|last13=Buckner|first13=Randy L.|title=The organization of the human cerebral cortex estimated by intrinsic functional connectivity|journal=Journal of Neurophysiology|date=2011-09-01|volume=106|issue=3|pages=1125–1165|doi=10.1152/jn.00338.2011|pmid=21653723|pmc=3174820|bibcode=2011NatSD...2...31H }}{{cite journal|last1=Shafiei|first1=Golia|last2=Zeighami|first2=Yashar|last3=Clark|first3=Crystal A.|last4=Coull|first4=Jennifer T.|last5=Nagano-Saito|first5=Atsuko|last6=Leyton|first6=Marco|last7=Dagher|first7=Alain|last8=Mišić|first8=Bratislav|title=Dopamine Signaling Modulates the Stability and Integration of Intrinsic Brain Networks|journal=Cerebral Cortex|date=2018-10-01|volume=29|issue=1|pages=397–409|doi=10.1093/cercor/bhy264|pmid=30357316|pmc=6294404 }}{{cite journal|last1=Bailey|first1=Stephen K.|last2=Aboud|first2=Katherine S.|last3=Nguyen|first3=Tin Q.|last4=Cutting|first4=Laurie E.|title=Applying a network framework to the neurobiology of reading and dyslexia|journal=Journal of Neurodevelopmental Disorders|date=13 December 2018|volume=10|issue=1|page=37|doi=10.1186/s11689-018-9251-z|pmid=30541433|pmc=6291929 |doi-access=free }}{{Cite journal |last1=Boerger |first1=Timothy |last2=Pahapill |first2=Peter |last3=Butts |first3=Alissa |last4=Arocho-Quinones |first4=Elsa |last5=Raghavan |first5=Manoj |last6=Krucoff |first6=Max |title=Large-scale brain networks and intra-axial tumor surgery: a narrative review of functional mapping techniques, critical needs, and scientific opportunities |journal=Frontiers in Human Neuroscience |publication-date=2023-07-13 |volume=17 |doi=10.3389/fnhum.2023.1170419|doi-access=free |pmid=37520929 |pmc=10372448 }}
= Salience (midcingulo-insular) =
{{Main|Salience network}}
- The salience network consists of several structures, including the anterior (bilateral) insula, dorsal anterior cingulate cortex, and three subcortical structures which are the ventral striatum, substantia nigra/ventral tegmental region.{{Cite journal|last1=Steimke|first1=Rosa|last2=Nomi|first2=Jason S.|last3=Calhoun|first3=Vince D.|last4=Stelzel|first4=Christine|last5=Paschke|first5=Lena M.|last6=Gaschler|first6=Robert|last7=Goschke|first7=Thomas|last8=Walter|first8=Henrik|last9=Uddin|first9=Lucina Q.|date=2017-12-01|title=Salience network dynamics underlying successful resistance of temptation|journal=Social Cognitive and Affective Neuroscience|language=en|volume=12|issue=12|pages=1928–1939|doi=10.1093/scan/nsx123|pmid=29048582|pmc=5716209|issn=1749-5016|doi-access=free}}{{Citation|last=Menon|first=V.|title=Brain Mapping|chapter=Salience Network|date=2015-01-01|chapter-url=http://www.sciencedirect.com/science/article/pii/B978012397025100052X|pages=597–611|editor-last=Toga|editor-first=Arthur W.|publisher=Academic Press|isbn=978-0-12-397316-0|access-date=2019-12-08|doi=10.1016/B978-0-12-397025-1.00052-X}} It plays the key role of monitoring the salience of external inputs and internal brain events. Specifically, it aids in directing attention by identifying important biological and cognitive events.
- This network includes the ventral attention network, which primarily includes the temporoparietal junction and the ventral frontal cortex of the right hemisphere. These areas respond when behaviorally relevant stimuli occur unexpectedly. The ventral attention network is inhibited during focused attention in which top-down processing is being used, such as when visually searching for something. This response may prevent goal-driven attention from being distracted by non-relevant stimuli. It becomes active again when the target or relevant information about the target is found.{{Cite journal|last1=Shulman|first1=Gordon L.|last2=McAvoy|first2=Mark P.|last3=Cowan|first3=Melanie C.|last4=Astafiev|first4=Serguei V.|last5=Tansy|first5=Aaron P.|last6=d'Avossa|first6=Giovanni|last7=Corbetta|first7=Maurizio|date=2003-11-01|title=Quantitative Analysis of Attention and Detection Signals During Visual Search|journal=Journal of Neurophysiology|volume=90|issue=5|pages=3384–3397|doi=10.1152/jn.00343.2003|pmid=12917383|issn=0022-3077}}
= Attention (dorsal frontoparietal) =
{{Main|Dorsal attention network}}
- This network is involved in the voluntary, top-down deployment of attention.{{cite journal|last1=Vossel|first1=Simone|last2=Geng|first2=Joy J.|last3=Fink|first3=Gereon R.|title=Dorsal and Ventral Attention Systems: Distinct Neural Circuits but Collaborative Roles|journal=The Neuroscientist|date=2014|volume=20|issue=2|pages=150–159|doi=10.1177/1073858413494269|pmid=23835449|pmc=4107817}}{{cite journal|last1=Hutton|first1=John S.|last2=Dudley|first2=Jonathan|last3=Horowitz-Kraus|first3=Tzipi|last4=DeWitt|first4=Tom|last5=Holland|first5=Scott K.|title=Functional Connectivity of Attention, Visual, and Language Networks During Audio, Illustrated, and Animated Stories in Preschool-Age Children|journal=Brain Connectivity|date=1 September 2019|volume=9|issue=7|pages=580–592|doi=10.1089/brain.2019.0679|pmid=31144523|pmc=6775495|ref=Hutton}} Within the dorsal attention network, the intraparietal sulcus and frontal eye fields influence the visual areas of the brain. These influencing factors allow for the orientation of attention.{{Cite journal|last1=Fox|first1=Michael D.|last2=Corbetta|first2=Maurizio|last3=Snyder|first3=Abraham Z.|last4=Vincent|first4=Justin L.|last5=Raichle|first5=Marcus E.|date=2006-06-27|title=Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems|journal=Proceedings of the National Academy of Sciences|language=en|volume=103|issue=26|pages=10046–10051|doi=10.1073/pnas.0604187103|issn=0027-8424|pmid=16788060|pmc=1480402|bibcode=2006PNAS..10310046F|doi-access=free}}
= Control (lateral frontoparietal) =
{{Main|Frontoparietal network}}
- This network initiates and modulates cognitive control and comprises 18 sub-regions of the brain.{{Cite journal|last1=Scolari|first1=Miranda|last2=Seidl-Rathkopf|first2=Katharina N|last3=Kastner|first3=Sabine|date=2015-02-01|title=Functions of the human frontoparietal attention network: Evidence from neuroimaging|journal=Current Opinion in Behavioral Sciences|series=Cognitive control|volume=1|pages=32–39|doi=10.1016/j.cobeha.2014.08.003|issn=2352-1546|pmid=27398396|pmc=4936532}} There is a strong correlation between fluid intelligence and the involvement of the fronto-parietal network with other networks.{{Cite journal|last1=Marek|first1=Scott|last2=Dosenbach|first2=Nico U. F.|date=June 2018|title=The frontoparietal network: function, electrophysiology, and importance of individual precision mapping|journal=Dialogues in Clinical Neuroscience|volume=20|issue=2|pages=133–140|doi=10.31887/DCNS.2018.20.2/smarek|issn=1294-8322|pmc=6136121|pmid=30250390}}
- Versions of this network have also been called the central executive (or executive control) network and the cognitive control network.
= Sensorimotor or somatomotor (pericentral) =
{{Main|Sensorimotor network}}
- This network processes somatosensory information and coordinates motion. The auditory cortex may be included.
= Visual (occipital) =
{{Further|Visual cortex}}
- This network handles visual information processing.{{cite journal|last1=Yang|first1=Yan-li|last2=Deng|first2=Hong-xia|last3=Xing|first3=Gui-yang|last4=Xia|first4=Xiao-luan|last5=Li|first5=Hai-fang|title=Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state|journal=Neural Regeneration Research|date=2015|volume=10|issue=2|pages=298–307|doi=10.4103/1673-5374.152386|pmid=25883631|pmc=4392680 |doi-access=free }}
Other networks
See also
References
{{reflist|30em}}
{{Human connectomics}}