layer cake representation

{{Short description|Concept in mathematics}}

File:Volume-Alhazen.svg

In mathematics, the layer cake representation of a non-negative, real-valued measurable function f defined on a measure space (\Omega,\mathcal{A},\mu) is the formula

:f(x) = \int_0^\infty 1_{L(f, t)} (x) \, \mathrm{d}t,

for all x \in \Omega, where 1_E denotes the indicator function of a subset E\subseteq \Omega and L(f,t) denotes the (\color{red}\text{strict}) super-level set:

:

L(f, t) = \{ y \in \Omega \mid f(y) \geq t \}\;\;\;{\color{red}\text{or}\;

L(f, t) = \{ y \in \Omega \mid f(y) > t \}}.

The layer cake representation follows easily from observing that

: 1_{L(f, t)}(x) = 1_{[0, f(x)]}(t)\;\;\;

{\color{red}\text{or}\;1_{L(f, t)}(x) = 1_{[0, f(x))}(t)}

where either integrand gives the same integral:

:

f(x) = \int_0^{f(x)} \,\mathrm{d}t.

The layer cake representation takes its name from the representation of the value f(x) as the sum of contributions from the "layers" L(f,t): "layers"/values t below f(x) contribute to the integral, while values t above f(x) do not.

It is a generalization of Cavalieri's principle and is also known under this name.{{cite book |last1=Willem |first1=Michel |title=Functional analysis : fundamentals and applications |date=2013 |location=New York |isbn=978-1-4614-7003-8}}{{rp|at=cor. 2.2.34}}

Applications

The layer cake representation can be used to rewrite the Lebesgue integral as an improper Riemann integral. For the measure space, (\Omega,\mathcal{A},\mu), let S\subseteq\Omega, be a measureable subset (S\in\mathcal{A}) and f a non-negative measureable function. By starting with the Lebesgue integral, then expanding f(x), then exchanging integration order (see Fubini-Tonelli theorem) and simplifying in terms of the Lebesgue integral of an indicator function, we get the Riemann integral:

:

\begin{align}

\int_S f(x)\,\text{d}\mu(x)

&= \int_S \int_0^\infty 1_{\{x\in\Omega\mid f(x)>t\}}(x)\,\text{d}t\,\text{d}\mu(x) \\

&= \int_0^\infty\!\! \int_S 1_{\{x\in\Omega\mid f(x)>t\}}(x)\,\text{d}\mu(x)\,\text{d}t\\

&= \int_0^\infty\!\! \int_\Omega 1_{\{x\in S\mid f(x)>t\}}(x)\,\text{d}\mu(x)\,\text{d}t\\

&= \int_0^{\infty} \mu(\{x\in S \mid f(x)>t\})\,\text{d}t.

\end{align}

This can be used in turn, to rewrite the integral for the Lp-space p-norm, for 1\leq p<+\infty:

:\int_\Omega |f(x)|^p \, \mathrm{d}\mu(x) = p\int_0^{\infty} s^{p-1}\mu(\{ x \in \Omega:|f(x)| > s \}) \mathrm{d}s,

which follows immediately from the change of variables t=s^{p} in the layer cake representation of |f(x)|^p. This representation can be used to prove Markov's inequality and Chebyshev's inequality.

See also

References

{{Reflist}}

  • {{cite journal | last=Gardner | first=Richard J. | title=The Brunn–Minkowski inequality | journal=Bull. Amer. Math. Soc. (N.S.) | volume=39 | issue=3 | year=2002 | pages=355–405 (electronic) | doi=10.1090/S0273-0979-02-00941-2 | doi-access=free }}
  • {{cite book

|last1=Lieb

|first1=Elliott

|authorlink1=Elliott H. Lieb

|last2=Loss

|first2=Michael|author2-link=Michael Loss

|title=Analysis

|year=2001|edition=2nd

|publisher=American Mathematical Society

|series=Graduate Studies in Mathematics|volume=14

|isbn=978-0821827833}}

Category:Real analysis