mammoth

{{short description|Extinct genus of mammals}}

{{Other uses}}

{{pp|small=yes}}

{{Automatic taxobox

| fossil_range = Late Miocene to Late Holocene, {{fossilrange|6.2|0.004}}

| image = Mammuthus columbi Page.jpg

| image_caption = Columbian mammoth in the Page Museum in Los Angeles.

| display_parents = 2

| taxon = Mammuthus

| authority = Brookes, 1828

| type_species = {{extinct}}Elephas primigenius (=Mammuthus primigenius){{cite journal |last1=Garutt |first1=W.E. |last2=Gentry |first2=Anthea |last3=Lister |first3=A.M. |title=Case 2726: Mammuthus Brookes 1828 (Mammalia Proboscidea) proposed conservation and Elephas primigenius Blumenbach, 1799 (currently Mammuthus primigenius) proposed designation as the type species of Mammuthus, and designation of a neotype |journal=Bulletin of Zoological Nomenclature |date=1990 |volume=47 |issue=1 |pages=38–44 |doi=10.5962/bhl.part.2651 |url=https://www.biodiversitylibrary.org/page/12230365|doi-access=free }}{{cite journal |title=Opinion 1661: Mammuthus Brookes, 1828 (Mammalia, Proboscidea): conserved, and Elephas primigenius Blumenbach, 1799 designated as the type species |journal=Bulletin of Zoological Nomenclature |date=1991 |volume=48 |issue=3 |pages=279–280 |url=https://www.biodiversitylibrary.org/page/12230958}}

| type_species_authority = Blumenbach, 1799

| subdivision_ranks = Species

| subdivision = *†M. africanavus

| synonyms = *Archidiskodon Pohling, 1888

  • Parelephas Osborn, 1924
  • Mammonteus

}}

A mammoth is any species of the extinct elephantid genus Mammuthus. They lived from the late Miocene epoch (from around 6.2 million years ago) into the Holocene until about 4,000 years ago, with mammoth species at various times inhabiting Africa, Asia, Europe, and North America. Mammoths are distinguished from living elephants by their (typically large) spirally twisted tusks and in some later species, the development of numerous adaptions to living in cold environments, including a thick layer of fur.

Mammoths and Asian elephants are more closely related to each other than they are to African elephants. The oldest mammoth representative, Mammuthus subplanifrons, appeared around 6 million years ago during the late Miocene in what is now southern and Eastern Africa.{{Cite book |last=Sanders |first=William J. |url=https://www.taylorfrancis.com/books/9781315118918 |title=Evolution and Fossil Record of African Proboscidea |date=2023-07-07 |publisher=CRC Press |isbn=978-1-315-11891-8 |edition=1 |location=Boca Raton |pages=155, 208–212 |doi=10.1201/b20016|s2cid=259625811 }} Later in the Pliocene, by about three million years ago, mammoths dispersed into Eurasia, eventually covering most of Eurasia before migrating into North America around 1.5–1.3 million years ago, becoming ancestral to the Columbian mammoth (M. columbi). The woolly mammoth (M. primigenius) evolved about 700–400,000 years ago in Siberia, with some surviving on Russia's Wrangel Island in the Arctic Ocean until as recently as 4,000 years ago, still extant during the existence of the earliest civilisations in ancient Egypt and Mesopotamia.

Etymology and early observations

According to The American Heritage Dictionary, the word "mammoth" likely originates from *mān-oŋt, a word in the Mansi languages of western Siberia meaning "earth horn", in reference to mammoth tusks.“[https://www.ahdictionary.com/word/search.html?q=mammoth mammoth]”, in The American Heritage Dictionary of the English Language, 5th edition, Boston, Mass.: Houghton Mifflin Harcourt, 2016, →ISBN. Mammoths appear in the folklore of the indigenous people of Siberia, who were impressed by the great size of their remains. In the mythology of the Evenk people, mammoths were responsible for the creation of the world, digging up the land from the ocean floor with their tusks. The Selkup believed that mammoths lived underground and guarded the underworld, while the Nenets and the Mansi (the latter of whom, along with the Khanty, conceived mammoths as giant birds) believed that mammoths were responsible for the creation of mountains and lakes, while the Yakuts regarded mammoths as water spirits.{{Cite journal |last1=Serikov |first1=Iu.B. |last2=Serikova |first2=A.Iu. |date=April 2005 |title=The Mammoth in the Myths, Ethnography, and Archeology of Northern Eurasia |url=https://www.tandfonline.com/doi/full/10.1080/10611959.2005.11029015 |journal=Anthropology & Archeology of Eurasia |language=en |volume=43 |issue=4 |pages=8–18 |doi=10.1080/10611959.2005.11029015 |issn=1061-1959|url-access=subscription }}

The word mammoth was first used in Europe during the early 17th century, when referring to maimanto tusks discovered in Siberia,{{cite book |last1=Lister |first1=A. |title=Mammoths – Giants of the Ice Age |last2=Bahn |first2=P. |date=2007 |publisher=Frances Lincoln |isbn=978-0-520-26160-0 |edition=3rd |location=London |page=49 |ref=Lister}} as recorded in the 1618 edition of the Dictionariolum Russico-Anglicum."[https://www.oed.com/dictionary/mammoth_n Mammoth]" Oxford English Dictionary 2000 The earliest scientific research paper on mammoths was by Vasily Tatishchev in 1725. John Bell, who was on the Ob River in 1722, said that mammoth tusks were well known in the area. They were called "mammon's horn" and were often found in washed-out river banks. Bell bought one and presented it to Hans Sloan who pronounced it an elephant's tooth.John Bell, Travels from St Petersburg in Russia to diverse parts of Asia, Edinburgh, 1806, pages 383-386

In the American colonies around 1725, enslaved Africans digging in the vicinity of the Stono River in South Carolina unearthed molar teeth recognised in modern times to belong to Columbian mammoths, with the remains subsequently examined by the British naturalist Mark Catesby, who visited the site, and later published an account of his visit in 1843. While the slave owners were puzzled by the objects and suggested that they originated from the great flood described in the Bible, Catesby noted that the slaves unanimously agreed that the objects were the teeth of elephants similar to those from their African homeland, to which Catesby concurred, marking the first technical identification of any fossil animal in North America.{{Cite web |last=Elliott |first=Christian |date=22 February 2023 |title=The First Fossil Finders in North America Were Enslaved and Indigenous People |url=https://www.smithsonianmag.com/history/the-first-fossil-finders-in-north-america-were-enslaved-and-indigenous-people-180981615/ |access-date=2024-10-24 |website=Smithsonian Magazine |language=en}}{{Cite journal |last=Simpson |first=George Gaylord |date=1942 |title=The Beginnings of Vertebrate Paleontology in North America |url=https://www.jstor.org/stable/985085 |journal=Proceedings of the American Philosophical Society |volume=86 |issue=1 |pages=134 |jstor=985085 |issn=0003-049X}}

In 1796, French biologist Georges Cuvier was the first to identify woolly mammoth remains not as modern elephants transported to the Arctic, but as an entirely new species. He argued this species had gone extinct and no longer existed, a concept that was not widely accepted at the time.{{cite book |last=Switek |first=B. |url=https://archive.org/details/writteninstoneev0000swit |title=Written in Stone: Evolution, the Fossil Record, and Our Place in Nature |publisher=Bellevue Literary Press |year=2010 |isbn=978-1-934137-29-1 |pages=[https://archive.org/details/writteninstoneev0000swit/page/174 174–180] |url-access=registration}}{{Cite journal |last=Cuvier |first=G. |year=1796 |title=Mémoire sur les épèces d'elephans tant vivantes que fossils, lu à la séance publique de l'Institut National le 15 germinal, an IV |journal=Magasin Encyclopédique, 2e Anée |language=fr |pages=440–445}} Following Cuvier's identification, German naturalist Johann Friedrich Blumenbach gave the woolly mammoth its scientific name, Elephas primigenius, in 1799, placing it in the Elephas, the genus which today contains the Asian elephant (Elephas maximus). Originally the African elephants, as well as the American mastodon (described in 1792) were also placed in Elephas. Cuvier coined the synonym Elephas mammonteus for the woolly mammoth a few months later, but E. primigenius became the widely used name for the species, including by Cuvier.{{cite journal |last1=Reich |first1=M. |last2=Gehler |first2=A. |last3=Mohl |first3=D. |last4=van der Plicht |first4=H. |last5=Lister |first5=A. M. |year=2007 |title=The rediscovery of type material of Mammuthus primigenius (Mammalia: Proboscidea) |journal=International Mammoth Conference IV (Poster) |page=295}} The genus name Mammuthus was coined by British anatomist Joshua Brookes in 1828, as part of a survey of his museum collection.BROOKES, J., 1828. A catalogue of the anatomical and zoological museum of Jeshua Brookes, Esq., F.R.S. etc. Part 1. R.Taylor, London. 76 pp.

Thomas Jefferson, who famously had a keen interest in paleontology, is partially responsible for transforming the word mammoth from a noun describing the prehistoric elephant to an adjective describing anything of surprisingly large size. The first recorded use of the word as an adjective was in a description of a large wheel of cheese (the "Cheshire Mammoth Cheese") given to Jefferson in 1802.Simpson, J. (2009). "[http://public.oed.com/aspects-of-english/word-stories/mammoth/ Word Stories: Mammoth] {{Webarchive|url=https://web.archive.org/web/20130522163541/http://public.oed.com/aspects-of-english/word-stories/mammoth/ |date=2013-05-22 }}." Oxford English Dictionary Online, Oxford University Press. Accessed 05-JUN-2009.

Evolution

The earliest known proboscideans, the clade that contains the elephants, arose about 55 million years ago on the landmass of Afro-Arabia. The closest relatives of the Proboscidea are the sirenians and the hyraxes. The family Elephantidae arose a million years ago in Africa, including the living elephants and mammoths. Among many now-extinct clades, the mastodon is only a distant relative of the mammoths and part of the separate Mammutidae family, which diverged 25 million years before the mammoths evolved.{{cite book |ref=Lister|last1=Lister |first1=A. |last2=Bahn |first2=P. |date=2007 |title=Mammoths – Giants of the Ice Age |edition=3rd |publisher=Frances Lincoln |location=London |isbn=978-0-520-26160-0}}

Following the publication of the woolly mammoths mitochondrial genome sequence in 1997, it has since become widely accepted that mammoths and Asian elephants share a closer relationship with each other than either do to African elephants.{{Cite journal |last1=Ozawa |first1=Tomowo |last2=Hayashi |first2=Seiji |last3=Mikhelson |first3=Victor M. |date=April 1997 |title=Phylogenetic Position of Mammoth and Steller's Sea Cow Within Tethytheria Demonstrated by Mitochondrial DNA Sequences |url=http://link.springer.com/10.1007/PL00006160 |journal=Journal of Molecular Evolution |language=en |volume=44 |issue=4 |pages=406–413 |doi=10.1007/PL00006160 |pmid=9089080 |bibcode=1997JMolE..44..406O |issn=0022-2844|url-access=subscription }}

The following cladogram shows the placement of the genus Mammuthus among other proboscideans, based on hyoid characteristics and genetics:{{Cite journal | last1 = Shoshani | first1 = J. | last2 = Ferretti | first2 = M. P. | last3 = Lister | first3 = A. M. | last4 = Agenbroad | first4 = L. D. | last5 = Saegusa | first5 = H. | last6 = Mol | first6 = D. | last7 = Takahashi | first7 = K. | title = Relationships within the Elephantinae using hyoid characters | doi = 10.1016/j.quaint.2007.02.003 | journal = Quaternary International | volume = 169-170 | pages = 174–185 | year = 2007 |bibcode = 2007QuInt.169..174S }}{{Cite journal |last1=Palkopoulou |first1=Eleftheria |last2=Lipson |first2=Mark |last3=Mallick |first3=Swapan |last4=Nielsen |first4=Svend |last5=Rohland |first5=Nadin |last6=Baleka |first6=Sina |last7=Karpinski |first7=Emil |last8=Ivancevic |first8=Atma M. |last9=To |first9=Thu-Hien |last10=Kortschak |first10=R. Daniel |last11=Raison |first11=Joy M. |date=2018-03-13 |title=A comprehensive genomic history of extinct and living elephants |journal=Proceedings of the National Academy of Sciences |volume=115 |issue=11 |pages=E2566–E2574 |bibcode=2018PNAS..115E2566P |doi=10.1073/pnas.1720554115 |issn=0027-8424 |pmc=5856550 |pmid=29483247 |doi-access=free}}

{{clade | style = font-size: 90%;

|1={{clade

|label1=Elephantimorpha

|1={{clade

|1={{extinct}}Mammutidae (mastodons) 70 px

|label2=Elephantida

|2={{clade

|1={{extinct}}Gomphotheriidae (gomphotheres) 70 px

|label2=Elephantoidea

|2={{clade

|1={{extinct}}Stegodontidae (stegodontids) 70 px

|label2=Elephantidae

|2={{clade

|1={{clade

|1=Loxodonta (African elephants) 60 px

|2={{extinct}}Palaeoloxodon (straight-tusked elephants) 60 px

}}

|2={{clade

|1=Elephas (Asian elephants) 60 px

|2={{extinct}}Mammuthus (mammoths) 70 px

}}

}}

}}

}}

}}

}}

}}

It is possible to reconstruct the evolutionary history of the genus through morphological studies. Mammoth species can be identified from the number of enamel ridges/lamellae on their molars; the primitive species had few ridges, which increased gradually as new species evolved and replaced the former ones. At the same time, the crowns of the teeth became longer, and the skulls became higher from top to bottom and shorter from the back to the front over time to accommodate this.{{Cite journal |last1=Lister |first1=A. M. |last2=Sher |first2=A. V. |last3=Van Essen |first3=H. |last4=Wei |first4=G. |year=2005 |title=The pattern and process of mammoth evolution in Eurasia |url=http://doc.rero.ch/record/13496/files/PAL_E277.pdf |journal=Quaternary International |volume=126–128 |pages=49–64 |bibcode=2005QuInt.126...49L |doi=10.1016/j.quaint.2004.04.014}}

The earliest mammoths, assigned to the species Mammuthus subplanifrons, are known from southern and eastern Africa, with the earliest records dating to the Late Miocene, around 6.2–5.3 million years ago. By the Late Pliocene, mammoths had become confined to the northern portions of the African continent with remains from this time assigned to Mammuthus africanavus.{{Cite book |last=Sanders |first=William J. |url=https://www.taylorfrancis.com/books/9781315118918 |title=Evolution and Fossil Record of African Proboscidea |date=2023-07-07 |publisher=CRC Press |isbn=978-1-315-11891-8 |edition=1 |location=Boca Raton |pages=245, 252, 263–266 |doi=10.1201/b20016|s2cid=259625811 }} During the Late Pliocene, by 3.2 million years ago, mammoths dispersed into Eurasia via the Sinai Peninsula. The earliest mammoths in Eurasia are assigned to the species Mammuthus rumanus.{{Cite journal |last1=Iannucci |first1=Alessio |last2=Sardella |first2=Raffaele |date=2023-02-28 |title=What Does the "Elephant-Equus" Event Mean Today? Reflections on Mammal Dispersal Events around the Pliocene-Pleistocene Boundary and the Flexible Ambiguity of Biochronology |journal=Quaternary |volume=6 |issue=1 |pages=16 |doi=10.3390/quat6010016 |doi-access=free |bibcode=2023Quat....6...16I |issn=2571-550X|hdl=11573/1680082 |hdl-access=free }} The youngest remains of mammoths in Africa are from Aïn Boucherit, Algeria dating to the Early Pleistocene, around 2.3–2 million years ago (with a possible later record from Aïn Hanech, Algeria, dating to 1.95–1.78 million years ago).

Mammuthus rumanus is thought to be the ancestor of Mammuthus meridionalis, which first appeared at the beginning of the Pleistocene, around 2.6 million years ago.{{Cite journal |last1=Lister |first1=Adrian M. |last2=Sher |first2=Andrei V. |last3=van Essen |first3=Hans |last4=Wei |first4=Guangbiao |date=January 2005 |title=The pattern and process of mammoth evolution in Eurasia |journal=Quaternary International |volume=126-128 |pages=49–64 |bibcode=2005QuInt.126...49L |doi=10.1016/j.quaint.2004.04.014 |issn=1040-6182|url=http://doc.rero.ch/record/13496/files/PAL_E277.pdf }} Mammuthus meridionalis subsequently gave rise to Mammuthus trogontherii (the steppe mammoth) in Eastern Asia around 1.7 million years ago. Around 1.5–1.3 million years ago, M. trogontherii crossed the Bering Land Bridge into North America, becoming ancestral to Mammuthus columbi (the Columbian mammoth).{{Cite journal |last1=Lister |first1=A. M. |last2=Sher |first2=A. V. |date=2015-11-13 |title=Evolution and dispersal of mammoths across the Northern Hemisphere |journal=Science |volume=350 |issue=6262 |pages=805–809 |bibcode=2015Sci...350..805L |doi=10.1126/science.aac5660 |issn=0036-8075 |pmid=26564853 |s2cid=206639522|doi-access=free }} At the end of the Early Pleistocene Mammuthus trogontherii migrated into Europe, replacing M. meridionalis around 1–0.8 million years ago. Mammuthus primigenius (the woolly mammoth) had evolved from M. trogontherii in Siberia by around 600,000–500,000 years ago, replacing M. trogontherii in Europe by around 200,000 years ago, and migrated into North America during the Late Pleistocene.{{Cite journal |last=Lister |first=Adrian M. |date=October 2022 |title=Mammoth evolution in the late Middle Pleistocene: The Mammuthus trogontherii-primigenius transition in Europe |url=https://linkinghub.elsevier.com/retrieve/pii/S0277379122003249 |journal=Quaternary Science Reviews |volume=294 |pages=107693 |doi=10.1016/j.quascirev.2022.107693|bibcode=2022QSRv..29407693L |s2cid=252264887 |url-access=subscription |doi-access=free }}

Several dwarf mammoth species, with small body sizes, evolved on islands as a result of insular dwarfism. These include Mammuthus lamarmorai on Sardinia (late Middle-Late Pleistocene),{{Cite journal |last1=Palombo |first1=Maria Rita |last2=Zedda |first2=Marco |last3=Melis |first3=Rita Teresa |date=November 2017 |title=A new elephant fossil from the late Pleistocene of Alghero: The puzzling question of Sardinian dwarf elephants |journal=Comptes Rendus Palevol |volume=16 |issue=8 |pages=841–849 |doi=10.1016/j.crpv.2017.05.007|bibcode=2017CRPal..16..841P }} Mammuthus exilis on the Channel Islands of California (Late Pleistocene),{{cite web |last=Agenbroad |first=L. D. |year=2010 |title=. Mammuthus exilis from the California Channel Islands: Height, Mass and Geologic Age |url=http://iws.org/CISProceedings/7th_CIS_Proceedings/Agenbroad.pdf |access-date=13 June 2012 |work=Proceedings of the 7th California Islands Symposium |page=17 |archive-date=8 June 2012 |archive-url=https://web.archive.org/web/20120608211048/http://iws.org/CISProceedings/7th_CIS_Proceedings/Agenbroad.pdf |url-status=dead }} and Mammuthus creticus on Crete (Early Pleistocene).{{Cite journal |last1=Herridge |first1=V. L. |last2=Lister |first2=A. M. |year=2012 |title=Extreme insular dwarfism evolved in a mammoth |journal=Proceedings of the Royal Society B: Biological Sciences |volume=279 |issue=1741 |pages=3193–3300 |doi=10.1098/rspb.2012.0671 |pmc=3385739 |pmid=22572206}}

Description

{{See also|Elephant#Anatomy}}

Like living elephants, mammoths typically had large body sizes. The largest known species like Mammuthus meridionalis and Mammuthus trogontherii (the steppe mammoth) were considerably larger than modern elephants, with mature adult males having an average height of approximately {{convert|3.8-4.2|m|1|abbr=on}} at the shoulder and weights of {{convert|9.6-12.7|tonne|lb|lk=on}}, while exceptionally large males may have reached {{convert|4.5|m|1|abbr=on}} at the shoulder and {{convert|14.3|tonne|lb|1}} in weight.{{Cite journal | last1 = Larramendi | first1 = A. | year = 2016 | title = Shoulder height, body mass and shape of proboscideans | journal = Acta Palaeontologica Polonica | volume = 61 | doi = 10.4202/app.00136.2014 | url = https://www.app.pan.pl/archive/published/app61/app001362014.pdf | doi-access = free }} However, woolly mammoths were considerably smaller, only about as large as modern African bush elephants with males around {{convert|2.80-3.15|m|1|abbr=on}} high at the shoulder, and {{convert|4.5-6|tonne|lb|lk=on}} in weight on average,{{Cite journal |last1=Larramendi |first1=Asier |last2=Palombo |first2=Maria Rita |last3=Marano |first3=Federica |date=2017 |title=Reconstructing the life appearance of a Pleistocene giant: size, shape, sexual dimorphism and ontogeny of Palaeoloxodon antiquus (Proboscidea: Elephantidae) from Neumark-Nord 1 (Germany) |url=https://www.paleoitalia.it/wp-content/uploads/2021/08/01_Larramendi_et_al_2017_BSPI_563.pdf |journal=Bollettino della Società Paleontologica Italiana |issue=3 |pages=299–317 |doi=10.4435/BSPI.2017.29 |doi-broken-date=2024-11-20 |issn=0375-7633 |archive-url=https://web.archive.org/web/20230930183334/https://www.paleoitalia.it/wp-content/uploads/2021/08/01_Larramendi_et_al_2017_BSPI_563.pdf |archive-date=2023-09-30}} with the largest recorded individuals being around {{convert|3.5|m|1|abbr=on}} tall and {{convert|8.2|tonne|lb|1}} in weight. The insular dwarf mammoth species were considerably smaller, with the smallest species M. creticus estimated to have a shoulder height of only around {{Convert|1|m|ft}} and a weight of about {{Convert|180|kg|lb}}, making it one of the smallest elephantids known.

{{gallery|M._meridionalis_skeletal.png|Mammuthus meridionalis bull, around {{convert|4|m|ft}} tall|M. trogontherii skeletal (cropped).png|Steppe mammoth (M. trogontherii) around {{convert|3.9|m|ft}} tall in front-on (without head) side-on and top-down views|M._columbi_skeletals_(cropped).png|Columbian mammoth (M. columbi) bull around {{convert|3.7|m|ft}} tall|M. primigenius modified.png|Woolly mammoths (M. primigenius), including one of the largest, the Siegsdorf mammoth (left, around {{convert|3.5|m|ft}} tall), and a mature Siberian bull (around {{convert|2.7|m|ft}} metres tall)|||||width=185|height=|lines=|align=center|title=Gallery of mammoth skeletons}}

The number of lamellae (ridge-like structures) on the molars, particularly on the third molars, substantially increased over the course of mammoth evolution. The earliest Eurasian species M. rumanus have around 8-10 lamellae on the third molars,{{Cite journal |last=Markov |first=Georgi N. |date=October 2012 |title=Mammuthus rumanus, early mammoths, and migration out of Africa: Some interrelated problems |url=https://linkinghub.elsevier.com/retrieve/pii/S1040618211003144 |journal=Quaternary International |volume=276-277 |pages=23–26 |bibcode=2012QuInt.276...23M |doi=10.1016/j.quaint.2011.05.041|url-access=subscription }} while Late Pleistocene woolly mammoths have 20-28 lamellae on the third molars. These changes also corresponded with reduced enamel thickness and increasing tooth height (hypsodonty). These changes are thought to be adaptations to increasing abrasion resulting from the shift in the diet of mammoths from a browsing based diet in M. rumanus, towards a grazing diet in later species.{{Cite journal |last1=Lister |first1=Adrian M. |last2=Sher |first2=Andrei V. |date=2001-11-02 |title=The Origin and Evolution of the Woolly Mammoth |url=https://www.science.org/doi/10.1126/science.1056370 |journal=Science |volume=294 |issue=5544 |pages=1094–1097 |bibcode=2001Sci...294.1094L |doi=10.1126/science.1056370 |issn=0036-8075 |pmid=11691991 |s2cid=10662205|url-access=subscription }}{{Cite journal |last1=Rivals |first1=Florent |last2=Semprebon |first2=Gina M. |last3=Lister |first3=Adrian M. |date=September 2019 |title=Feeding traits and dietary variation in Pleistocene proboscideans: A tooth microwear review |url=https://linkinghub.elsevier.com/retrieve/pii/S0277379119302641 |journal=Quaternary Science Reviews |volume=219 |pages=145–153 |bibcode=2019QSRv..219..145R |doi=10.1016/j.quascirev.2019.06.027 |s2cid=200073388|url-access=subscription }}

{{Multiple image

| image1 = Mammuthus sp. sectioned upper and lower molars 1.jpg

| header = Molars

| align = center

| image2 = Mammuthus meridionalis molar - Cleveland Museum of Natural History - 2014-12-26 (20267609313).jpg

| image3 = Woolly mammoth molar - Cleveland Museum of Natural History - 2014-12-26 (20859260938).jpg

| total_width = 600

| caption1 = Cross section through elephantid molars, showing their internal structure

| caption2 = Molar of Mammuthus meridionalis

| caption3 = Molar of a woolly mammoth (Mammuthus primigenius)

}}

Both sexes bore tusks. A first, small set appeared at about the age of six months, and these were replaced at about 18 months by the permanent set. Growth of the permanent set was at a rate of about {{convert|2.5|to|15.2|cm|abbr=on|0}} per year.{{cite book|last1=Agenbroad|first1=Larry|last2=Nelson|first2=Lisa|title=Mammoths|publisher=Lerner|location=Minneapolis|isbn=978-0-8225-2862-3|page=[https://archive.org/details/mammothsiceagegi00larr/page/34 34]|year=2002|url=https://archive.org/details/mammothsiceagegi00larr/page/34}} The tusks display a strong spiral twisting.{{Cite journal |last1=Rabinovich |first1=Rivka |last2=Lister |first2=Adrian M. |date=July 2017 |title=The earliest elephants out of Africa: Taxonomy and taphonomy of proboscidean remains from Bethlehem |url=https://linkinghub.elsevier.com/retrieve/pii/S1040618216308370 |journal=Quaternary International |volume=445 |pages=23–42 |doi=10.1016/j.quaint.2016.07.010|bibcode=2017QuInt.445...23R |url-access=subscription }} Mammoth tusks are among the largest known among proboscideans with some specimens over {{convert|4|m|1|abbr=on}} in length and likely {{convert|200|kg|1|abbr=on}} in weight with some historical reports suggesting tusks of Columbian mammoths could reach lengths of around {{convert|5|m|1|abbr=on}} substantially surpassing the largest known modern elephant tusks.{{Cite journal |last=Larramendi |first=Asier |date=2023-12-10 |title=Estimating tusk masses in proboscideans: a comprehensive analysis and predictive model |url=https://www.tandfonline.com/doi/full/10.1080/08912963.2023.2286272 |journal=Historical Biology |volume=37 |pages=45–58 |doi=10.1080/08912963.2023.2286272 |s2cid=266182491 |issn=0891-2963|url-access=subscription }}

The heads of mammoths were prominently domed.{{Cite journal |last1=Larramendi |first1=Asier |last2=Palombo |first2=Maria Rita |last3=Marano |first3=Federica |date=2017 |title=Reconstructing the life appearance of a Pleistocene giant: size, shape, sexual dimorphism and ontogeny of Palaeoloxodon antiquus (Proboscidea: Elephantidae) from Neumark-Nord 1 (Germany) |url=https://www.paleoitalia.it/wp-content/uploads/2021/08/01_Larramendi_et_al_2017_BSPI_563.pdf |journal=Bollettino della Società Paleontologica Italiana |issue=3 |pages=299–317 |doi=10.4435/BSPI.2017.29 |doi-broken-date=2024-11-20 |issn=0375-7633|archive-url=https://web.archive.org/web/20230930183334/https://www.paleoitalia.it/wp-content/uploads/2021/08/01_Larramendi_et_al_2017_BSPI_563.pdf |archive-date=2023-09-30 }} The first several thoracic vertebrae of mammoths typically had long neural spines.{{Cite journal |last=Larramendi |first=Asier |date=2014-02-16 |title=Skeleton of a Late Pleistocene steppe mammoth (Mammuthus trogontherii) from Zhalainuoer, Inner Mongolian Autonomous Region, China |url=http://link.springer.com/10.1007/s12542-014-0222-8 |journal=Paläontologische Zeitschrift |volume=89 |issue=2 |pages=229–250 |doi=10.1007/s12542-014-0222-8 |bibcode=2015PalZ...89..229L |issn=0031-0220|url-access=subscription }} The back was typically sloping, with the body being wider than that of African elephants. The tails of mammoths were relatively short compared to living elephants.File:Woolly mammoth model Royal BC Museum in Victoria.jpgWhile early mammoth species like M. meridionalis were probably relatively hairless, similar to modern elephants,{{Cite book |last=Lister |first=Adrian |url=https://books.google.com/books?id=6bhLvgAACAA |title=Mammoths: giants of the ice age |author2=Bahn, Paul |date=2007 |publisher=Frances Lincoln LTD |isbn=978-0-7112-2801-6 |pages=25–26}} M. primigenius and likely M. trogontherii had a substantial coat of fur, among other physiological adaptations for living in cold environments. Genetic sequencing of M. trogontherii-like mammoths, over 1 million years old from Siberia suggests that they had already developed many of the genetic changes found in woolly mammoths responsible for tolerance of cold conditions.{{Cite journal |last1=van der Valk |first1=Tom |last2=Pečnerová |first2=Patrícia |last3=Díez-del-Molino |first3=David |last4=Bergström |first4=Anders |last5=Oppenheimer |first5=Jonas |last6=Hartmann |first6=Stefanie |last7=Xenikoudakis |first7=Georgios |last8=Thomas |first8=Jessica A. |last9=Dehasque |first9=Marianne |last10=Sağlıcan |first10=Ekin |last11=Fidan |first11=Fatma Rabia |date=17 February 2021 |title=Million-year-old DNA sheds light on the genomic history of mammoths |journal=Nature |volume=591 |issue=7849 |pages=265–269 |bibcode=2021Natur.591..265V |doi=10.1038/s41586-021-03224-9 |issn=1476-4687 |pmc=7116897 |pmid=33597750}} Scientists discovered and studied the remains of a mammoth calf, and found that fat greatly influenced its form, and enabled it to store large amounts of nutrients necessary for survival in temperatures as low as {{convert|-50|C|F}}.{{cite book |author=Peter D. Moore |url=https://archive.org/details/tundra0000moor |title=Tundra |publisher=Facts On File |year=2008 |isbn=978-0-8160-5933-1 |page=[https://archive.org/details/tundra0000moor/page/198 198] |url-access=registration}} The fat also allowed the mammoths to increase their muscle mass, allowing the mammoths to fight against enemies and live longer.{{Cite journal |last1=Maschenko |first1=E. N. |last2=Boeskorov |first2=G. G. |last3=Baranov |first3=V. A. |year=2013 |title=Morphology of a mammoth calf (Mammuthus primigenius) from Ol'chan (Oimiakon, Yakutia) |journal=Paleontological Journal |volume=47 |issue=4 |pages=425–438 |doi=10.1134/S0031030113040096 |bibcode=2013PalJ...47..425M |s2cid=84317574}} Woolly mammoths evolved a suite of adaptations for arctic life, including morphological traits such as small ears and tails to minimize heat loss, a thick layer of subcutaneous fat, and numerous sebaceous glands for insulation, as well as a large brown-fat hump like deposit behind the neck that may have functioned as a heat source and fat reservoir during winter.{{Cite journal |last=Lynch |first=Vincent |date=2 July 2015 |title=Elephantid Genomes Reveal the Molecular Bases of Woolly Mammoth Adaptations to the Arctic |journal=Cell Reports |volume=12 |issue=2 |pages=217–228 |doi=10.1016/j.celrep.2015.06.027 |pmid=26146078 |doi-access=free |hdl-access=free |hdl=10220/38768}}

Behaviour and palaeoecology

{{See also|Elephant#Behaviour and ecology}}

Based on studies of their close relatives, the modern elephants and mammoths probably had a gestation period of 22 months, resulting in a single calf being born. Their social structure was probably the same as that of living elephants, with females and juveniles residing in herds headed by a matriarch, whilst bulls lived solitary lives or formed loose groups after sexual maturity,{{Cite web |title=Columbian Mammoth & Channel Island Mammoth |url=http://library.sandiegozoo.org/factsheets/_extinct/mammoth/mammoth.htm |url-status=dead |archive-url=https://web.archive.org/web/20110727235134/http://library.sandiegozoo.org/factsheets/_extinct/mammoth/mammoth.htm |archive-date=2011-07-27 |access-date=2010-06-15 |publisher=San Diego Zoo}} with analysis of testosterone levels in tusks indicating that adult males experienced periods of musth like modern elephants, where they entered a state of heightened aggression.{{Cite journal |last1=Cherney |first1=Michael D. |last2=Fisher |first2=Daniel C. |last3=Auchus |first3=Richard J. |last4=Rountrey |first4=Adam N. |last5=Selcer |first5=Perrin |last6=Shirley |first6=Ethan A. |last7=Beld |first7=Scott G. |last8=Buigues |first8=Bernard |last9=Mol |first9=Dick |last10=Boeskorov |first10=Gennady G. |last11=Vartanyan |first11=Sergey L. |last12=Tikhonov |first12=Alexei N. |date=2023-05-18 |title=Testosterone histories from tusks reveal woolly mammoth musth episodes |url=https://www.nature.com/articles/s41586-023-06020-9 |journal=Nature |volume=617 |issue=7961 |pages=533–539 |bibcode=2023Natur.617..533C |doi=10.1038/s41586-023-06020-9 |issn=0028-0836 |pmid=37138076 |s2cid=258485513|url-access=subscription }}

The earliest mammoth species like M. subplanifrons and M. rumanus were mixed feeders (both browsing and grazing) to browsers. Throughout mammoth evolution in Eurasia, their diet shifted towards mixed feeding-grazing in M. trogontherii, culminating in the woolly mammoth, which was largely a grazer, with stomach contents of woolly mammoths suggesting that they largely fed on grass and forbs. M. columbi is thought to have been a mixed feeder.

Like living elephants, mammoth adults may have been largely invulnerable to non-human predation,{{Cite journal |last=Owen-Smith |first=Norman |date=1987 |title=Pleistocene extinctions: the pivotal role of megaherbivores |url=https://www.cambridge.org/core/product/identifier/S0094837300008927/type/journal_article |journal=Paleobiology |language=en |volume=13 |issue=3 |pages=351–362 |doi=10.1017/S0094837300008927 |bibcode=1987Pbio...13..351O |issn=0094-8373|url-access=subscription }} though evidence has been found for the hunting of mammoth calves by predators, such as by the scimitar-toothed cat (Homotherium).{{Cite journal |last1=DeSantis |first1=Larisa R. G. |last2=Feranec |first2=Robert S. |last3=Antón |first3=Mauricio |last4=Lundelius |first4=Ernest L. |date=21 June 2021 |title=Dietary ecology of the scimitar-toothed cat Homotherium serum |journal=Current Biology |volume=31 |issue=12 |pages=2674–2681.e3 |bibcode=2021CBio...31E2674D |doi=10.1016/j.cub.2021.03.061 |pmid=33862006 |doi-access=free}}

In living proboscideans, broken tusks sometimes occur during, for example, fights between males or when elephants of both sexes shove each other to reach critical resources such as water. The fracture surface of the remaining (rooted) tooth then becomes smoothed from use. It is very likely that this also occurred in extinct proboscideans such as mammoths as seen from a tusk found at Fenstanton Gravels (Cambs, UK) which still had some of the outer layers of cementum preserved and had a smooth, polished surface on an old, fractured surface ('faceting').{{cite journal|last1=Boismier|first1=WA|last2=Allison|first2=E|last3=Ardis|first3=C|last4=Banerjea|first4=R|last5=Batchelor|first5=CR|last6=Dark|first6=P|last7=Dudgeon|first7=K|last8=Green|first8=CP|last9=Henderson|first9=E|last10=Ladocha|first10=J|last11=Weinstock|first11=J|last12=Young|first12=DS|last13=Schwenninger|first13=J-L|title=Investigation of Borrow Pit TEA28 BP3, Fenstanton, Cambridgeshire, UK|journal=Internet Archaeology|date=2024|issue=67|doi=10.11141/ia.67.23|doi-access=free|url=https://intarch.ac.uk/journal/issue67/23/index.html}}

Relationship with early humans

{{Further|Woolly_mammoth#Relationship_with_humans|Columbian_mammoth#Relationship_with_humans}}

Evidence that humans interacted with mammoths extends back to around 1.8 million years ago, with a number of bones of Mammuthus meridionalis from the Dmanisi site in Georgia having marks suggested to be the result of butchery by archaic humans, likely as a result of scavenging.{{Cite journal |last1=Tappen |first1=Martha |last2=Bukhsianidze |first2=Maia |last3=Ferring |first3=Reid |last4=Coil |first4=Reed |last5=Lordkipanidze |first5=David |date=October 2022 |title=Life and death at Dmanisi, Georgia: Taphonomic signals from the fossil mammals |journal=Journal of Human Evolution |volume=171 |pages=103249 |doi=10.1016/j.jhevol.2022.103249|pmid=36116366 |doi-access=free |bibcode=2022JHumE.17103249T }} During the Last Glacial Period, modern humans hunted woolly mammoths,{{Cite journal |last1=Wojtal |first1=Piotr |last2=Wilczyński |first2=Jarosław |date=August 2015 |title=Hunters of the giants: Woolly mammoth hunting during the Gravettian in Central Europe |url=https://linkinghub.elsevier.com/retrieve/pii/S1040618215005339 |journal=Quaternary International |volume=379 |pages=71–81 |doi=10.1016/j.quaint.2015.05.040|bibcode=2015QuInt.379...71W |url-access=subscription }} used their remains to create art and tools,{{Cite journal |last1=Braun |first1=Ingmar M. |last2=Palombo |first2=Maria Rita |date=October 2012 |title=Mammuthus primigenius in the cave and portable art: An overview with a short account on the elephant fossil record in Southern Europe during the last glacial |url=https://linkinghub.elsevier.com/retrieve/pii/S1040618212004946 |journal=Quaternary International |volume=276-277 |pages=61–76 |doi=10.1016/j.quaint.2012.07.010|bibcode=2012QuInt.276...61B |url-access=subscription }} and depicted them in works of art. Remains of Columbian mammoths at a number of sites suggest that they were hunted by Paleoindians, the first humans to inhabit the Americas. A possible bone engraving of a Columbian mammoth made by Paleoindians is known from Vero Beach, Florida.{{Cite journal |last1=Purdy |first1=Barbara A. |last2=Jones |first2=Kevin S. |last3=Mecholsky |first3=John J. |last4=Bourne |first4=Gerald |last5=Hulbert |first5=Richard C. |last6=MacFadden |first6=Bruce J. |last7=Church |first7=Krista L. |last8=Warren |first8=Michael W. |last9=Jorstad |first9=Thomas F. |last10=Stanford |first10=Dennis J. |last11=Wachowiak |first11=Melvin J. |last12=Speakman |first12=Robert J. |date=November 2011 |title=Earliest art in the Americas: incised image of a proboscidean on a mineralized extinct animal bone from Vero Beach, Florida |url=https://linkinghub.elsevier.com/retrieve/pii/S0305440311001828 |journal=Journal of Archaeological Science |volume=38 |issue=11 |pages=2908–2913 |doi=10.1016/j.jas.2011.05.022|bibcode=2011JArSc..38.2908P |url-access=subscription }}

{{Multiple image

| image1 = Grotte de Rouff mammut.jpg

| header =

| align = center

| image2 = Vero Beach engraving.png

| image3 =

| total_width = 600

| caption1 = Upper Paleolithic painting of woolly mammoth from Rouffignac Cave, France

| caption2 = Probable engraving of a Columbian mammoth from Vero Beach, Florida

| caption3 =

}}

Extinction

{{Further|Woolly mammoth#Extinction|Columbian mammoth#Extinction}}

Following the end of the Last Glacial Maximum, the range of the woolly mammoth began to contract, disappearing from most of Europe by 14,000 years ago.{{Cite journal |last1=Fordham |first1=Damien A. |last2=Brown |first2=Stuart C. |last3=Akçakaya |first3=H. Reşit |last4=Brook |first4=Barry W. |last5=Haythorne |first5=Sean |last6=Manica |first6=Andrea |last7=Shoemaker |first7=Kevin T. |last8=Austin |first8=Jeremy J. |last9=Blonder |first9=Benjamin |last10=Pilowsky |first10=July A. |last11=Rahbek |first11=Carsten |last12=Nogues-Bravo |first12=David |date=January 2022 |editor-last=Coulson |editor-first=Tim |title=Process-explicit models reveal pathway to extinction for woolly mammoth using pattern-oriented validation |url=https://onlinelibrary.wiley.com/doi/10.1111/ele.13911 |journal=Ecology Letters |volume=25 |issue=1 |pages=125–137 |doi=10.1111/ele.13911 |pmid=34738712 |bibcode=2022EcolL..25..125F |issn=1461-023X|hdl=11343/299174 |hdl-access=free }} By the Younger Dryas (around 12,900-11,700 years Before Present), woolly mammoths were confined to the northernmost regions of Siberia. This contraction is suggested to have been caused by the warming induced expansion of unfavourable wet tundra and forest environments at the expense of the preferred dry open mammoth steppe, with the possible additional pressure of human hunting. The last woolly mammoths in mainland Siberia became extinct around 10,000 years ago, during the early Holocene.{{Cite journal |last1=Dehasque |first1=Marianne |last2=Pečnerová |first2=Patrícia |last3=Muller |first3=Héloïse |last4=Tikhonov |first4=Alexei |last5=Nikolskiy |first5=Pavel |last6=Tsigankova |first6=Valeriya I. |last7=Danilov |first7=Gleb K. |last8=Díez-del-Molino |first8=David |last9=Vartanyan |first9=Sergey |last10=Dalén |first10=Love |last11=Lister |first11=Adrian M. |date=May 2021 |title=Combining Bayesian age models and genetics to investigate population dynamics and extinction of the last mammoths in northern Siberia |url=https://linkinghub.elsevier.com/retrieve/pii/S0277379121001207 |journal=Quaternary Science Reviews |volume=259 |pages=106913 |doi=10.1016/j.quascirev.2021.106913|bibcode=2021QSRv..25906913D }} The final extinction of mainland woolly mammoths may have been driven by human hunting. Relict populations survived on Saint Paul island in the Bering Strait until around 5,600 years ago, with their extinction likely due to the degradation of freshwater sources,{{Cite journal |last1=Graham |first1=Russell W. |last2=Belmecheri |first2=Soumaya |last3=Choy |first3=Kyungcheol |last4=Culleton |first4=Brendan J. |last5=Davies |first5=Lauren J. |last6=Froese |first6=Duane |last7=Heintzman |first7=Peter D. |last8=Hritz |first8=Carrie |last9=Kapp |first9=Joshua D. |last10=Newsom |first10=Lee A. |last11=Rawcliffe |first11=Ruth |last12=Saulnier-Talbot |first12=Émilie |last13=Shapiro |first13=Beth |last14=Wang |first14=Yue |last15=Williams |first15=John W. |date=2016-08-16 |title=Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska |journal=Proceedings of the National Academy of Sciences |volume=113 |issue=33 |pages=9310–9314 |doi=10.1073/pnas.1604903113 |doi-access=free |issn=0027-8424 |pmc=4995940 |pmid=27482085|bibcode=2016PNAS..113.9310G }} and on Wrangel Island off the coast of Northeast Siberia until around 4,000 years ago.

The last reliable dates of the Columbian mammoth date to around 12,500 years ago.{{Cite book |last=Stuart |first=Anthony J. |url=https://press.uchicago.edu/ucp/books/book/chicago/V/bo25538572.html |title=Vanished Giants: The Lost World of the Ice Age |publisher=University of Chicago Press |location=Chicago, IL |pages=97 |chapter=North America: Mastodon, Ground Sloths, and Sabertooth Cats}} Columbian mammoths became extinct as part of the end-Pleistocene extinction event where most large mammals across the Americas became extinct approximately simultaneously at the end of the Late Pleistocene.{{Cite journal |last1=Faith |first1=J. Tyler |last2=Surovell |first2=Todd A. |date=2009-12-08 |title=Synchronous extinction of North America's Pleistocene mammals |journal=Proceedings of the National Academy of Sciences |volume=106 |issue=49 |pages=20641–20645 |doi=10.1073/pnas.0908153106 |doi-access=free |issn=0027-8424 |pmc=2791611 |pmid=19934040|bibcode=2009PNAS..10620641F }} Hunting of Columbian mammoths by Paleoindians may have been a contributory factor in their extinction.{{Cite journal |last=Haynes |first=Gary |date=2022-07-03 |title=Sites in the Americas with Possible or Probable Evidence for the Butchering of Proboscideans |url=https://www.tandfonline.com/doi/full/10.1080/20555563.2022.2057834 |journal=PaleoAmerica |volume=8 |issue=3 |pages=187–214 |doi=10.1080/20555563.2022.2057834 |s2cid=251042359 |issn=2055-5563|url-access=subscription }} The timing of the extinction of the dwarf Sardinian mammoth Mammuthus lamarmorai is difficult to constrain precisely, though the youngest specimen likely dates to sometime around 57–29,000 years ago.{{Cite journal |last1=Palombo |first1=Maria Rita |last2=Zedda |first2=Marco |last3=Zoboli |first3=Daniel |date=March 2024 |title=The Sardinian Mammoth's Evolutionary History: Lights and Shadows |journal=Quaternary |language=en |volume=7 |issue=1 |pages=10 |doi=10.3390/quat7010010 |issn=2571-550X |doi-access=free|bibcode=2024Quat....7...10P }} The youngest records of the pygmy mammoth (Mammuthus exillis) date to around 13,000 years ago, coinciding with the reducing of the area of the Californian Channel Islands as a result of rising sea level, the earliest known humans in the Channel Islands, and climatic change resulting in the decline of the previously dominant conifer forest ecosystems and expansion of scrub and grassland.{{Cite journal |last1=Semprebon |first1=Gina M. |last2=Rivals |first2=Florent |last3=Fahlke |first3=Julia M. |last4=Sanders |first4=William J. |last5=Lister |first5=Adrian M. |last6=Göhlich |first6=Ursula B. |date=June 2016 |title=Dietary reconstruction of pygmy mammoths from Santa Rosa Island of California |url=https://linkinghub.elsevier.com/retrieve/pii/S1040618215014020 |journal=Quaternary International |language=en |volume=406 |pages=123–136 |doi=10.1016/j.quaint.2015.10.120|bibcode=2016QuInt.406..123S |url-access=subscription }}

See also

References

{{Reflist}}

Further reading

{{Commons category|Mammuthus}}

{{Wikispecies|Mammuthus}}

{{AmCyc Poster|Mammoth}}

{{Wiktionary|mammoth}}

  • {{cite book |last1=Bahn |first1=Paul G. |last2=Lister |first2=Adrian |date=1994 |title=Mammoths |publisher=Macmillan USA |location=New York |isbn=978-0-02-572985-8 |url=https://archive.org/details/mammoths00list }}
  • {{Cite journal | last1 = Capelli | first1 = C. | last2 = MacPhee | first2 = R. D. E. | last3 = Roca | first3 = A. L. | last4 = Brisighelli | first4 = F. | last5 = Georgiadis | first5 = N. | last6 = O'Brien | first6 = S. J. | last7 = Greenwood | first7 = A. D. | doi = 10.1016/j.ympev.2006.03.015 | title = A nuclear DNA phylogeny of the woolly mammoth (Mammuthus primigenius) | journal = Molecular Phylogenetics and Evolution | volume = 40 | issue = 2 | pages = 620–627 | year = 2006 | pmid = 16631387| bibcode = 2006MolPE..40..620C }}
  • {{cite magazine |last=Conniff |first=R. |date=2010 |title=Mammoths and Mastodons: All American Monsters|magazine=Smithsonian Magazine |url=http://www.smithsonianmag.com/science-nature/Mammoths-and-Mastodons-All-American-Monsters.html |access-date=2012-03-07}}
  • {{cite web |date=2008 |title=Mammoth genome cracked: key to cloning |publisher=COSMOS magazine |url=http://www.cosmosmagazine.com/news/2346/mammoth-genome-cracked-key-cloning |access-date=2012-03-07 |archive-date=2012-03-22 |archive-url=https://web.archive.org/web/20120322012031/http://www.cosmosmagazine.com/news/2346/mammoth-genome-cracked-key-cloning |url-status=dead }}
  • {{cite web |title=National Park Service Findings 'Good News' For Waco Mammoth Site |publisher=Baylor University |url=http://www.baylor.edu/pr/news.php?action=story&story=44819 |access-date=2012-03-07|date=2007-03-27 }}
  • {{cite web |last=Hayes |first=J. |date=2006 |title=Back from the dead |publisher=COSMOS magazine |url=http://www.cosmosmagazine.com/node/903 |access-date=2012-03-07 |url-status=dead |archive-url=https://web.archive.org/web/20120322015035/http://www.cosmosmagazine.com/node/903 |archive-date=2012-03-22 }}
  • Haynes, G. (1991). Mammoths, mastodons, and elephants. Biology, behavior, and the fossil record. Cambridge: Cambridge University Press. ISBN 0-521-38435-4.
  • {{cite web |last=Keddie |first=G. |title=The Mammoth Story |publisher=Royal BC Museum |url=http://www.royalbcmuseum.bc.ca/Content_Files/Files/mammoth-1.pdf+ |format=PDF |access-date=2012-03-07 |url-status=dead |archive-url=https://web.archive.org/web/20111225103948/http://www.royalbcmuseum.bc.ca/Content_Files/Files/mammoth-1.pdf |archive-date=2011-12-25 }}
  • {{Cite journal | last1 = Levy | first1 = S. | title = Clashing with Titans | journal = BioScience | volume = 56 | issue = 4 | pages = 292 | year = 2006 | doi = 10.1641/0006-3568(2006)56[292:CWT]2.0.CO;2 | doi-access = free }}
  • {{cite book |last=Martin |first=Paul |date=2005 |title=Twilight of the mammoths: ice age extinctions and the rewilding of America |publisher=University of California Press |location=Berkeley |isbn=978-0-520-23141-2 |url=https://archive.org/details/twilightofmammot00paul }}
  • {{cite book |last=Mercer |first=Henry Chapman |date=2010 |orig-year=1885 |title=The Lenape Stone: Or The Indian And The Mammoth (1885) |publisher=Kessinger Publishing, LLC |isbn=978-1-161-69753-7}}
  • {{cite news |last=Rodgers |first=J. |date=2006 |title=Mammoth skeleton found in Siberia |work=BBC News |url=http://news.bbc.co.uk/2/hi/europe/5008664.stm |access-date=2012-03-07}}
  • {{cite book |last=Stone |first=Richard G. |date=2003 |title=Mammoth: The Resurrection of an Ice Age Giant |publisher=Fourth Estate Ltd |isbn=978-1-84115-518-0}}

{{Elephants}}

{{Proboscidea Genera}}

{{Taxonbar|from=Q36715}}

{{Authority control}}

Category:Cenozoic mammals of Africa

Category:Cenozoic mammals of Asia

Category:Cenozoic mammals of Europe

Category:Cenozoic mammals of North America

Category:Holocene extinctions

Category:Pleistocene proboscideans

Category:Prehistoric elephants

Category:Taxa named by Joshua Brookes

Category:Zanclean first appearances