matrix t-distribution
{{Short description|Concept in statistics}}
{{refimprove|date=April 2016}}
{{DISPLAYTITLE:Matrix t-distribution}}
{{Probability distribution|
name =Matrix t|
type =density|
pdf_image =|
cdf_image =|
notation =|
parameters =
scale (positive-definite real matrix)
scale (positive-definite real matrix)
degrees of freedom (real)|
support =|
pdf =
\frac{\Gamma_p\left(\frac{\nu+n+p-1}{2}\right)}{(\pi)^\frac{np}{2} \Gamma_p\left(\frac{\nu+p-1}{2}\right)} |\boldsymbol\Omega|^{-\frac{n}{2}} |\boldsymbol\Sigma|^{-\frac{p}{2}}
:
|
cdf =No analytic expression|
mean = if , else undefined|
mode =|
variance = if , else undefined|
kurtosis =|
entropy =|
mgf =|
char =see below|
}}
In statistics, the matrix t-distribution (or matrix variate t-distribution) is the generalization of the multivariate t-distribution from vectors to matrices.Zhu, Shenghuo and Kai Yu and Yihong Gong (2007). [https://proceedings.neurips.cc/paper_files/paper/2007/file/061412e4a03c02f9902576ec55ebbe77-Paper.pdf "Predictive Matrix-Variate t Models."] In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, NIPS '07: Advances in Neural Information Processing Systems 20, pages 1721–1728. MIT Press, Cambridge, MA, 2008. The notation is changed a bit in this article for consistency with the matrix normal distribution article.{{Cite book|last=Gupta, Arjun K and Nagar, Daya K|title=Matrix variate distributions|publisher=CRC Press|year=1999|pages=Chapter 4}}
The matrix t-distribution shares the same relationship with the multivariate t-distribution that the matrix normal distribution shares with the multivariate normal distribution: If the matrix has only one row, or only one column, the distributions become equivalent to the corresponding (vector-)multivariate distribution. The matrix t-distribution is the compound distribution that results from an infinite mixture of a matrix normal distribution with an inverse Wishart distribution placed over either of its covariance matrices, and the multivariate t-distribution can be generated in a similar way.
In a Bayesian analysis of a multivariate linear regression model based on the matrix normal distribution, the matrix t-distribution is the posterior predictive distribution.
Definition
For a matrix t-distribution, the probability density function at the point of an space is
:
\times \left|\mathbf{I}_n + \boldsymbol\Sigma^{-1}(\mathbf{X} - \mathbf{M})\boldsymbol\Omega^{-1}(\mathbf{X}-\mathbf{M})^{\rm T}\right|^{-\frac{\nu+n+p-1}{2}},
where the constant of integration K is given by
:
\frac{\Gamma_p\left(\frac{\nu+n+p-1}{2}\right)}{(\pi)^\frac{np}{2} \Gamma_p\left(\frac{\nu+p-1}{2}\right)} |\boldsymbol\Omega|^{-\frac{n}{2}} |\boldsymbol\Sigma|^{-\frac{p}{2}}.
Here is the multivariate gamma function.
Properties
=Expected values=
The mean, or expected value is, if :
:
and we have the following second-order expectations, if :
:
= \frac{\mathbf{\Sigma}\operatorname{tr}(\mathbf{\Omega})}{\nu-2}
:
= \frac{\mathbf{\Omega}\operatorname{tr}(\mathbf{\Sigma}) }{\nu-2}
where denotes trace.
More generally, for appropriately dimensioned matrices A,B,C:
:
E[(\mathbf{X}- \mathbf{M})\mathbf{A}(\mathbf{X}- \mathbf{M})^{T}]
&= \frac{\mathbf{\Sigma}\operatorname{tr}(\mathbf{A}^T\mathbf{\Omega})}{\nu - 2} \\
E[(\mathbf{X}- \mathbf{M})^T\mathbf{B}(\mathbf{X}- \mathbf{M})]
&= \frac{\mathbf{\Omega}\operatorname{tr}(\mathbf{B}^T \mathbf{\Sigma})}{\nu - 2} \\
E[(\mathbf{X}- \mathbf{M})\mathbf{C}(\mathbf{X}- \mathbf{M})]
&= \frac{\mathbf{\Sigma}\mathbf{C}^T\mathbf{\Omega}}{\nu - 2}
\end{align}
=Transformation=
Transpose transform:
:
Linear transform: let A (r-by-n), be of full rank r ≤ n and B (p-by-s), be of full rank s ≤ p, then:
:
The characteristic function and various other properties can be derived from the re-parameterised formulation (see below).
Re-parameterized matrix ''t''-distribution
{{Probability distribution|
name =Re-parameterized matrix t|
type =density|
pdf_image =|
cdf_image =|
notation =|
parameters =
scale (positive-definite real matrix)
scale (positive-definite real matrix)
support =|
pdf =
:
- is the multivariate gamma function.
|
cdf =No analytic expression|
mean = if , else undefined|
median =|
mode =|
variance = if , else undefined|
skewness =|
kurtosis =|
entropy =|
mgf =|
char =see below|
}}
An alternative parameterisation of the matrix t-distribution uses two parameters and in place of .Iranmanesh, Anis, M. Arashi and S. M. M. Tabatabaey (2010). [http://www.ijmsi.ir/browse.php?a_id=139&slc_lang=en&sid=1&ftxt=1 "On Conditional Applications of Matrix Variate Normal Distribution"]. Iranian Journal of Mathematical Sciences and Informatics, 5:2, pp. 33–43.
This formulation reduces to the standard matrix t-distribution with
This formulation of the matrix t-distribution can be derived as the compound distribution that results from an infinite mixture of a matrix normal distribution with an inverse multivariate gamma distribution placed over either of its covariance matrices.
=Properties=
:
The property above comes from Sylvester's determinant theorem:
:
::
If and and are nonsingular matrices then
:
.
The characteristic function is
:
where
:
and where is the type-two Bessel function of Herz{{clarify|date=April 2016}} of a matrix argument.
See also
Notes
{{Reflist}}
External links
- [https://github.com/zweng/rmg A C++ library for random matrix generator]
{{ProbDistributions|multivariate}}