mediant (mathematics)
{{short description|Fraction made by summing the numerator and denominator of two fractions}}
{{distinguish|Median}}
In mathematics, the mediant of two fractions, generally made up of four positive integers
: and is defined as
That is to say, the numerator and denominator of the mediant are the sums of the numerators and denominators of the given fractions, respectively. It is sometimes called the freshman sum, as it is a common mistake in the early stages of learning about addition of fractions.
Technically, this is a binary operation on valid fractions (nonzero denominator), considered as ordered pairs of appropriate integers, a priori disregarding the perspective on rational numbers as equivalence classes of fractions. For example, the mediant of the fractions 1/1 and 1/2 is 2/3. However, if the fraction 1/1 is replaced by the fraction 2/2, which is an equivalent fraction denoting the same rational number 1, the mediant of the fractions 2/2 and 1/2 is 3/4. For a stronger connection to rational numbers the fractions may be required to be reduced to lowest terms, thereby selecting unique representatives from the respective equivalence classes.
In fact, mediants commonly occur in the study of continued fractions and in particular, Farey fractions. The nth Farey sequence Fn is defined as the (ordered with respect to magnitude) sequence of reduced fractions a/b (with coprime a, b) such that b ≤ n. If two fractions a/c < b/d are adjacent (neighbouring) fractions in a segment of Fn then the determinant relation mentioned above is generally valid and therefore the mediant is the simplest fraction in the interval (a/c, b/d), in the sense of being the fraction with the smallest denominator. Thus the mediant will then (first) appear in the (c + d)th Farey sequence and is the "next" fraction which is inserted in any Farey sequence between a/c and b/d. This gives the rule how the Farey sequences Fn are successively built up with increasing n.
The Stern–Brocot tree provides an enumeration of all positive rational numbers via mediants in lowest terms, obtained purely by iterative computation of the mediant according to a simple algorithm.
Properties
- The mediant inequality: An important property (also explaining its name) of the mediant is that it lies strictly between the two fractions of which it is the mediant: If and , then This property follows from the two relations and
- Componendo and Dividendo Theorems: If and , then{{cite book|title=Mathematical Formulae: For the Use of Candidates Preparing for the Army, Civil Service, University, and Other Examinations|first=R. M.|last=Milburn|publisher=Longmans, Green & Company|year=1880|pages=18–19|url=https://books.google.com/books?id=eAo4AAAAMAAJ&pg=PA18}}
:
:
- Assume that the pair of fractions a/c and b/d satisfies the determinant relation . Then the mediant has the property that it is the simplest fraction in the interval (a/c, b/d), in the sense of being the fraction with the smallest denominator. More precisely, if the fraction with positive denominator c' lies (strictly) between a/c and b/d, then its numerator and denominator can be written as and with two positive real (in fact rational) numbers . To see why the must be positive note that
and must be positive. The determinant relation then implies that both must be integers, solving the system of linear equations for . Therefore,
- The converse is also true: assume that the pair of reduced fractions a/c < b/d has the property that the reduced fraction with smallest denominator lying in the interval (a/c, b/d) is equal to the mediant of the two fractions. Then the determinant relation {{math|1=bc − ad = 1}} holds. This fact may be deduced e.g. with the help of Pick's theorem which expresses the area of a plane triangle whose vertices have integer coordinates in terms of the number vinterior of lattice points (strictly) inside the triangle and the number vboundary of lattice points on the boundary of the triangle. Consider the triangle with the three vertices v1 = (0, 0), v2 = (a, c), v3 = (b, d). Its area is equal to A point inside the triangle can be parametrized as where The Pick formula now implies that there must be a lattice point {{math|1=q = (q1, q2)}} lying inside the triangle different from the three vertices if {{math|bc − ad > 1}} (then the area of the triangle is ). The corresponding fraction q1/q2 lies (strictly) between the given (by assumption reduced) fractions and has denominator
- Relatedly, if p/q and r/s are reduced fractions on the unit interval such that |ps − rq| = 1 (so that they are adjacent elements of a row of the Farey sequence) then
?\left(\frac{p+r}{q+s}\right) = \frac1 2 \left(?\left(\frac p q\right) + {}?\left(\frac r s\right)\right) where {{math|?}} is Minkowski's question mark function.{{pb}}
Graphical determination of mediants
File:Mediant.pngs of the blue and red segments are two rational numbers; the slope of the green segment is their mediant.]]
A positive rational number is one in the form
Two points
The area of the parallelogram is
Generalization
The notion of mediant can be generalized to n fractions, and a generalized mediant inequality holds,{{cite web| first=Michael|last=Bensimhoun| url=https://commons.wikimedia.org/wiki/File:Extension_of_the_mediant_inequality.pdf| title = A note on the mediant inequality|year=2013|access-date=2023-12-25}} a fact that seems to have been first noticed by Cauchy. More precisely, the weighted mediant
See also
References
{{Reflist}}
External links
[https://youtube.com/watch?v=JnRnvehbcQs]
- [http://www.cut-the-knot.org/blue/Mediant.shtml Mediant Fractions] at cut-the-knot
- [http://mathpages.com/home/kmath055/kmath055.htm MATHPAGES, Kevin Brown: Generalized Mediant]
Category:Fractions (mathematics)