mode volume
{{short description|Number of bound modes that an optical fiber is capable of supporting}}
Mode volume may refer to figures of merit used either to characterise optical and microwave cavities or optical fibers.
In electromagnetic cavities
The mode volume (or modal volume) of an optical or microwave cavity is a measure of how concentrated the electromagnetic energy of a single cavity mode is in space, expressed as an effective volume in which most of the energy associated with an electromagentic mode is confined. Various expressions may be used to estimate this volume:{{Cite web |title=Calculating the modal volume of a cavity mode |url=https://optics.ansys.com/hc/en-us/articles/360034395374-Calculating-the-modal-volume-of-a-cavity-mode |archive-url=https://web.archive.org/web/20220817165833/https://optics.ansys.com/hc/en-us/articles/360034395374-Calculating-the-modal-volume-of-a-cavity-mode |archive-date=17 August 2022 |access-date=13 September 2024 |website=Ansys Optics}}{{Cite thesis |last=Kippenberg |first=Tobias Jan August |title=Nonlinear Optics in Ultra-High-Q Whispering-Gallery Optical Microcavities |date=2004 |degree=phd |publisher=California Institute of Technology |url=https://thesis.library.caltech.edu/2487/ |doi=10.7907/t5b6-9r14 |language=en}}
- The volume that would be occupied by the mode if its electromagnetic energy density was constant and equal to its maximum value
V_{m} = \frac{\int \epsilon |E|^{2} dV}{\rm{max}(\epsilon |E|^{2})} \;\;\; \rm{or} \;\;\;
V_{m} = \frac{\int (|B|^{2}/\mu) \; dV}{\rm{max}(|B|^{2}/\mu )}
- The volume over which the electromagnetic energy density exceeds some threshold (e.g., half the maximum energy density)
V_{m} = \int \left(|E|^{2} > \frac{|E_{max}|^{2}}{2}\right) dV
- The volume that would be occupied by the mode if its electromagnetic energy density was constant and equal to a weighted average value that emphasises higher energy densities.
V_{m} = \frac{(\int |E|^{2} dV)^{2}}{\int |E|^{4} dV} \;\;\; \rm{or} \;\;\;
V_{m} = \frac{(\int |B|^{2} dV)^{2}}{\int |B|^{4} dV}
where is the electric field strength, is the magnetic flux density, is the electric permittivity, denotes the magnetic permeability, and denotes the maximum value of its functional argument. In each definition the integral is over all space and may diverge in leaky cavities where the electromagnetic energy can radiate out to infinity and is thus not is not confined within the cavity volume.{{Cite web |last=Meldrum |first=A |title=Lesson 5: Whispering Gallery Modes |url=https://sites.ualberta.ca/~ameldrum/science/science5a.html |access-date=2024-12-19 |website=sites.ualberta.ca}} In this case modifications to the expressions above may be required to give an effective mode volume.{{Cite journal |last=Kristensen |first=P. T. |last2=Van Vlack |first2=C. |last3=Hughes |first3=S. |date=2012-05-15 |title=Generalized effective mode volume for leaky optical cavities |url=https://opg.optica.org/ol/abstract.cfm?uri=ol-37-10-1649 |journal=Optics Letters |language=en |volume=37 |issue=10 |pages=1649 |doi=10.1364/OL.37.001649 |issn=0146-9592|arxiv=1107.4601 }}
The mode volume of a cavity or resonator is of particular importance in cavity quantum electrodynamics{{Cite journal |last=Kimble |first=H. J. |date=1998 |title=Strong Interactions of Single Atoms and Photons in Cavity QED |url=https://iopscience.iop.org/article/10.1238/Physica.Topical.076a00127 |journal=Physica Scripta |language=en |volume=T76 |issue=1 |pages=127 |doi=10.1238/Physica.Topical.076a00127 |issn=0031-8949}} where it determines the magnitude{{Cite journal |last=Purcell |first=E. M. |author-link=Edward Mills Purcell |date=1946-06-01 |title=Proceedings of the American Physical Society: B10. Spontaneous Emission Probabilities at Radio Frequencies |url=https://link.aps.org/doi/10.1103/PhysRev.69.674.2 |journal=Physical Review |language=en |volume=69 |issue=11-12 |pages=674–674 |doi=10.1103/PhysRev.69.674.2 |issn=0031-899X|url-access=subscription }}{{Cite journal |last=Boroditsky |first=M. |last2=Coccioli |first2=R. |last3=Yablonovitch |first3=E. |last4=Rahmat-Samii |first4=Y. |last5=Kim |first5=K.W. |date=1998-12-01 |title=Smallest possible electromagnetic mode volume in a dielectric cavity |url=https://digital-library.theiet.org/content/journals/10.1049/ip-opt_19982468 |journal=IEE Proceedings - Optoelectronics |language=en |volume=145 |issue=6 |pages=391–397 |doi=10.1049/ip-opt:19982468 |issn=1350-2433|url-access=subscription }}{{Cite web |last=Chen |first=Tom |title=Calculating cavity quality factor, effective mode volume, and Purcell factor in Tidy3D Flexcompute |url=https://www.flexcompute.com/tidy3d/examples/notebooks/CavityFOM/ |access-date=2024-12-19 |website=www.flexcompute.com |language=en}} of the Purcell effect and coupling strength between cavity photons and atoms in the cavity.{{Cite journal |last=Srinivasan |first=Kartik |last2=Borselli |first2=Matthew |last3=Painter |first3=Oskar |last4=Stintz |first4=Andreas |last5=Krishna |first5=Sanjay |date=2006 |title=Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots |url=https://opg.optica.org/oe/viewmedia.cfm?uri=oe-14-3-1094&html=true |journal=Optics Express |language=en |volume=14 |issue=3 |pages=1094 |doi=10.1364/OE.14.001094 |issn=1094-4087|arxiv=physics/0511153 }}{{Cite journal |last=Yoshie |first=T. |last2=Scherer |first2=A. |last3=Hendrickson |first3=J. |last4=Khitrova |first4=G. |last5=Gibbs |first5=H. M. |last6=Rupper |first6=G. |last7=Ell |first7=C. |last8=Shchekin |first8=O. B. |last9=Deppe |first9=D. G. |date= |title=Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity |url=https://www.nature.com/articles/nature03119 |journal=Nature |language=en |volume=432 |issue=7014 |pages=200–203 |doi=10.1038/nature03119 |issn=0028-0836|url-access=subscription }} In particular, the Purcell factor is given by
:
where is the vacuum wavelength, is the refractive index of the cavity material (so is the wavelength inside the cavity), and and are the cavity quality factor and mode volume, respectively.
In fiber optics
In fiber optics, mode volume is the number of bound modes that an optical fiber is capable of supporting.{{Citation |last=Weik |first=Martin H. |title=mode volume |date=2000 |work=Computer Science and Communications Dictionary |pages=1033–1033 |url=https://link.springer.com/10.1007/1-4020-0613-6_11695 |access-date=2024-09-13 |place=Boston, MA |publisher=Springer US |language=en |doi=10.1007/1-4020-0613-6_11695 |isbn=978-0-7923-8425-0|url-access=subscription }}
The mode volume M is approximately given by and , respectively for step-index and power-law index profile fibers, where g is the profile parameter, and V is the normalized frequency, which must be greater than 5 for this approximation to be valid.