moment matrix

{{multiple issues|

{{confusing|reason= the subject of the article is not defined and the concepts linked in the introduction (e.g. monomial) seem to be not used with their common meaning|date=April 2021}}

{{technical|reason= only a specialist of the subject can understand its content|date=April 2021}}

{{context|details=context is provided only by linking some WP articles that do not mention the subject at all|date=April 2021}}

}}

In mathematics, a moment matrix is a special symmetric square matrix whose rows and columns are indexed by monomials. The entries of the matrix depend on the product of the indexing monomials only (cf. Hankel matrices.)

Moment matrices play an important role in polynomial fitting, polynomial optimization (since positive semidefinite moment matrices correspond to polynomials which are sums of squares){{Cite book|last=Lasserre, Jean-Bernard, 1953-|url=https://www.worldcat.org/oclc/624365972|title=Moments, positive polynomials and their applications|date=2010|publisher=Imperial College Press|others=World Scientific (Firm)|isbn=978-1-84816-446-8|location=London|oclc=624365972}} and econometrics.{{cite book |first=Arthur S. |last=Goldberger |author-link=Arthur Goldberger |chapter=Classical Linear Regression |title=Econometric Theory |location=New York |publisher=John Wiley & Sons |year=1964 |isbn=0-471-31101-4 |pages=[https://archive.org/details/econometrictheor0000gold/page/156 156–212] |chapter-url=https://books.google.com/books?id=KZq5AAAAIAAJ&pg=PA156 |url-access=registration |url=https://archive.org/details/econometrictheor0000gold/page/156 }}

Application in regression

A multiple linear regression model can be written as

:y = \beta_{0} + \beta_{1} x_{1} + \beta_{2} x_{2} + \dots \beta_{k} x_{k} + u

where y is the dependent variable, x_{1}, x_{2} \dots, x_{k} are the independent variables, u is the error, and \beta_{0}, \beta_{1} \dots, \beta_{k} are unknown coefficients to be estimated. Given observations \left\{ y_{i}, x_{i1}, x_{i2}, \dots, x_{ik} \right\}_{i=1}^{n}, we have a system of n linear equations that can be expressed in matrix notation.{{cite book |first=David S. |last=Huang |title=Regression and Econometric Methods |location=New York |publisher=John Wiley & Sons |year=1970 |isbn=0-471-41754-8 |pages=52–65 |url=https://books.google.com/books?id=5IxRAAAAMAAJ&pg=PA52 }}

:\begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1k} \\ 1 & x_{21} & x_{22} & \dots & x_{2k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nk} \\ \end{bmatrix} \begin{bmatrix} \beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{k} \end{bmatrix} + \begin{bmatrix} u_{1} \\ u_{2} \\ \vdots \\ u_{n} \end{bmatrix}

or

:\mathbf{y} = \mathbf{X} \boldsymbol{\beta} + \mathbf{u}

where \mathbf{y} and \mathbf{u} are each a vector of dimension n \times 1, \mathbf{X} is the design matrix of order N \times (k+1), and \boldsymbol{\beta} is a vector of dimension (k+1) \times 1. Under the Gauss–Markov assumptions, the best linear unbiased estimator of \boldsymbol{\beta} is the linear least squares estimator \mathbf{b} = \left( \mathbf{X}^{\mathsf{T}} \mathbf{X} \right)^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}, involving the two moment matrices \mathbf{X}^{\mathsf{T}} \mathbf{X} and \mathbf{X}^{\mathsf{T}} \mathbf{y} defined as

:\mathbf{X}^{\mathsf{T}} \mathbf{X} = \begin{bmatrix} n & \sum x_{i1} & \sum x_{i2} & \dots & \sum x_{ik} \\ \sum x_{i1} & \sum x_{i1}^{2} & \sum x_{i1} x_{i2} & \dots & \sum x_{i1} x_{ik} \\ \sum x_{i2} & \sum x_{i1} x_{i2} & \sum x_{i2}^{2} & \dots & \sum x_{i2} x_{ik} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sum x_{ik} & \sum x_{i1} x_{ik} & \sum x_{i2} x_{ik} & \dots & \sum x_{ik}^{2} \end{bmatrix}

and

:\mathbf{X}^{\mathsf{T}} \mathbf{y} = \begin{bmatrix} \sum y_{i} \\ \sum x_{i1} y_{i} \\ \vdots \\ \sum x_{ik} y_{i} \end{bmatrix}

where \mathbf{X}^{\mathsf{T}} \mathbf{X} is a square normal matrix of dimension (k+1) \times (k+1), and \mathbf{X}^{\mathsf{T}} \mathbf{y} is a vector of dimension (k+1 ) \times 1.

See also

References

{{Reflist}}