monodomain model

{{Refimprove|date=April 2014}}

The monodomain model is a reduction of the bidomain model of the electrical propagation in myocardial tissue.

The reduction comes from assuming that the intra- and extracellular domains have equal anisotropy ratios.

Although not as physiologically accurate as the bidomain model, it is still adequate in some cases, and has reduced complexity.{{cite book |

last1=Pullan

|first1=Andrew J.

|last2=Buist |first2=Martin L.

|last3=Cheng |first3=Leo K.

|title=Mathematically modelling the electrical activity of the heart : from cell to body surface and back again |date=2005

|publisher=World Scientific

|isbn=978-9812563736}}

Formulation

Being \mathbb T the spatial domain, and T the final time, the monodomain model can be formulated as follows{{cite book

|vauthors=Keener J, Sneyd J

| year = 2009

| edition = 2nd

| title = Mathematical Physiology II: Systems Physiology

| publisher = Springer

| isbn = 978-0-387-79387-0

}}

\frac{\lambda}{1+\lambda} \nabla \cdot \left(\mathbf\Sigma_i \nabla v \right) = \chi \left( C_m \frac{\partial v}{\partial t} + I_\text{ion} \right) \quad \quad \text{in }\mathbb T \times (0, T)

,

where \mathbf\Sigma_i is the intracellular conductivity tensor, v is the transmembrane potential, I_\text{ion} is the transmembrane ionic current per unit area, C_m is the membrane capacitance per unit area, \lambda is the intra- to extracellular conductivity ratio, and \chi is the membrane surface area per unit volume (of tissue).

= Derivation =

The monodomain model can be easily derived from the bidomain model. This last one can be written as

\begin{align}

\nabla \cdot \left(\mathbf\Sigma_i \nabla v \right) + \nabla \cdot \left(\mathbf\Sigma_i \nabla v_e \right) & = \chi \left( C_m \frac{\partial v}{\partial t} + I_\text{ion} \right) \\

\nabla \cdot \left( \mathbf\Sigma_i \nabla v \right) + \nabla \cdot \left( \left( \mathbf\Sigma_i + \mathbf\Sigma_e \right) \nabla v_e \right) & = 0

\end{align}

Assuming equal anisotropy ratios, i.e. \mathbf\Sigma_e = \lambda\mathbf\Sigma_i, the second equation can be written as

\nabla \cdot \left(\mathbf\Sigma_i\nabla v_e\right) = -\frac{\lambda}{1+\lambda}\nabla\cdot\left(\mathbf\Sigma_i\nabla v\right)

.

Then, inserting this into the first bidomain equation gives the unique equation of the monodomain model

\frac{1}{1+\lambda} \nabla \cdot \left(\mathbf\Sigma_i \nabla v \right) = \chi \left( C_m \frac{\partial v}{\partial t} + I_\text{ion} \right)

.

Boundary conditions

Differently from the bidomain model, the monodomain model is usually equipped with an isolated boundary condition, which means that it is assumed that there is not current that can flow from or to the domain (usually the heart).{{cite journal |last1=Rossi |first1=Simone |last2=Griffith |first2=Boyce E. |title=Incorporating inductances in tissue-scale models of cardiac electrophysiology |journal=Chaos: An Interdisciplinary Journal of Nonlinear Science |date=1 September 2017 |volume=27 |issue=9 |pages=093926 |doi=10.1063/1.5000706 |pmid=28964127 |issn=1054-1500|pmc=5585078 }}{{cite journal |last1=Boulakia |first1=Muriel |last2=Cazeau |first2=Serge |last3=Fernández |first3=Miguel A. |last4=Gerbeau |first4=Jean-Frédéric |last5=Zemzemi |first5=Nejib |title=Mathematical Modeling of Electrocardiograms: A Numerical Study |journal=Annals of Biomedical Engineering |date=24 December 2009 |volume=38 |issue=3 |pages=1071–1097 |doi=10.1007/s10439-009-9873-0|pmid=20033779 |s2cid=10114284 |url=https://hal.inria.fr/inria-00400490/file/RR-6977.pdf }} Mathematically, this is done imposing a zero transmembrane potential flux (homogeneous Neumann boundary condition), i.e.:

: (\mathbf \Sigma_i \nabla v)\cdot \mathbf n = 0 \quad \quad \text{on }\partial\mathbb T \times (0, T)

where \mathbf n is the unit outward normal of the domain and \partial \mathbb T is the domain boundary.

See also

References