morpheein

{{Short description|Model of protein allosteric regulation}}

{{distinguish|Morphine}}

Image:Morpheein dice.PNG

Morpheeins are proteins that can form two or more different homo-oligomers (morpheein forms), but must come apart and change shape to convert between forms. The alternate shape may reassemble to a different oligomer. The shape of the subunit dictates which oligomer is formed.{{cite journal |doi=10.1016/j.tibs.2005.07.003 |title=Morpheeins – a new structural paradigm for allosteric regulation |year=2005 |last1=Jaffe |first1=Eileen K. |journal=Trends in Biochemical Sciences |volume=30 |issue=9 |pages=490–7 |pmid=16023348}}{{cite journal |doi=10.1038/nsb963 |title=Control of tetrapyrrole biosynthesis by alternate quaternary forms of porphobilinogen synthase |year=2003 |last1=Breinig |first1=Sabine |last2=Kervinen |first2=Jukka |last3=Stith |first3=Linda |last4=Wasson |first4=Andrew S |last5=Fairman |first5=Robert |last6=Wlodawer |first6=Alexander |last7=Zdanov |first7=Alexander |last8=Jaffe |first8=Eileen K |journal=Nature Structural Biology |volume=10 |issue=9 |pages=757–63 |pmid=12897770|s2cid=24188785 }} Each oligomer has a finite number of subunits (stoichiometry). Morpheeins can interconvert between forms under physiological conditions and can exist as an equilibrium of different oligomers. These oligomers are physiologically relevant and are not misfolded protein; this distinguishes morpheeins from prions and amyloid. The different oligomers have distinct functionality. Interconversion of morpheein forms can be a structural basis for allosteric regulation, an idea noted many years ago, and later revived.{{cite journal |doi=10.1016/j.chembiol.2008.04.012 |pmc=2703447 |title=Shape Shifting Leads to Small-Molecule Allosteric Drug Discovery |year=2008 |last1=Lawrence |first1=Sarah H. |last2=Ramirez |first2=Ursula D. |last3=Tang |first3=Lei |last4=Fazliyez |first4=Farit |last5=Kundrat |first5=Lenka |last6=Markham |first6=George D. |last7=Jaffe |first7=Eileen K. |journal=Chemistry & Biology |volume=15 |issue=6 |pages=586–96 |pmid=18559269}}{{cite journal |doi=10.1016/j.abb.2011.11.020 |pmc=3298769 |title=Dynamic dissociating homo-oligomers and the control of protein function |year=2012 |last1=Selwood |first1=Trevor |last2=Jaffe |first2=Eileen K. |journal=Archives of Biochemistry and Biophysics |volume=519 |issue=2 |pages=131–43 |pmid=22182754}} A mutation that shifts the normal equilibrium of morpheein forms can serve as the basis for a conformational disease.{{cite journal |doi=10.1086/511444 |pmc=1785348 |title=ALAD Porphyria is a Conformational Disease |year=2007 |last1=Jaffe |first1=Eileen K. |last2=Stith |first2=Linda |journal=The American Journal of Human Genetics |volume=80 |issue=2 |pages=329–37 |pmid=17236137}} Features of morpheeins can be exploited for drug discovery.{{cite journal |doi= 10.2174/2210289201001010001 |doi-access=free|pmc=3107518 |title=Morpheeins – A New Pathway For Allosteric Drug Discovery |year=2010 |last1=Jaffe |first1=Eileen K. |journal=The Open Conference Proceedings Journal |volume=1 |pages=1–6 |pmid=21643557}} The dice image (Fig 1) represents a morpheein equilibrium containing two different monomeric shapes that dictate assembly to a tetramer or a pentamer. The one protein that is established to function as a morpheein is porphobilinogen synthase,{{cite journal |doi=10.1074/jbc.M500218200 |title=Substrate-induced Interconversion of Protein Quaternary Structure Isoforms |year=2005 |last1=Tang |first1=L. |journal=Journal of Biological Chemistry |volume=280 |issue=16 |pages=15786–93 |pmid=15710608 |last2=Stith |first2=L |last3=Jaffe |first3=EK|doi-access=free }}{{cite journal |doi=10.1016/j.abb.2011.10.010 |pmc=3291741 |title=Allostery and the dynamic oligomerization of porphobilinogen synthase |year=2012 |last1=Jaffe |first1=Eileen K. |last2=Lawrence |first2=Sarah H. |journal=Archives of Biochemistry and Biophysics |volume=519 |issue=2 |pages=144–53 |pmid=22037356}} though there are suggestions throughout the literature that other proteins may function as morpheeins (for more information see "Table of Putative Morpheeins" below).

Implications for drug discovery

Conformational differences between subunits of different oligomers and related functional differences of a morpheein provide a starting point for drug discovery. Protein function is dependent on the oligomeric form; therefore, the protein's function can be regulated by shifting the equilibrium of forms. A small molecule compound can shift the equilibrium either by blocking or favoring formation of one of the oligomers. The equilibrium can be shifted using a small molecule that has a preferential binding affinity for only one of the alternate morpheein forms. An inhibitor of porphobilinogen synthase with this mechanism of action has been documented.

Implications for allosteric regulation

The morpheein model of allosteric regulation has similarities to and differences from other models.{{cite journal |doi=10.1002/bmb.20211 |pmc=2575429 |title=Expanding the concepts in protein structure-function relationships and enzyme kinetics: Teaching using morpheeins |year=2008 |last1=Lawrence |first1=Sarah H. |last2=Jaffe |first2=Eileen K. |journal=Biochemistry and Molecular Biology Education |volume=36 |issue=4 |pages=274–283 |pmid=19578473}} The concerted model (the Monod, Wyman and Changeux (MWC) model) of allosteric regulation requires all subunits to be in the same conformation or state within an oligomer like the morpheein model.{{cite journal |doi=10.1016/S0022-2836(63)80091-1 |title=Allosteric proteins and cellular control systems |year=1963 |last1=Monod |first1=Jacques |last2=Changeux |first2=Jean-Pierre |last3=Jacob |first3=François |journal=Journal of Molecular Biology |volume=6 |issue=4 |pages=306–29 |pmid=13936070}}{{cite journal |doi=10.1016/S0022-2836(65)80285-6 |title=On the nature of allosteric transitions: A plausible model |year=1965 |last1=Monod |first1=Jacques |last2=Wyman |first2=Jeffries |last3=Changeux |first3=Jean-Pierre |journal=Journal of Molecular Biology |volume=12 |pages=88–118 |pmid=14343300}} However, neither this model nor the sequential model (Koshland, Nemethy, and Filmer model) takes into account that the protein may dissociate to interconvert between oligomers.{{cite book |doi=10.1016/S1874-6047(08)60170-5 |chapter=7 The Molecular Basis for Enzyme Regulation |title=The Enzymes Volume 1 |year=1970 |last1=Koshland |first1=D.E. |isbn=978-0-12-122701-2 |volume=1 |pages=341–396 |chapter-url=https://archive.org/details/enzymes0000boye }}{{cite journal |doi=10.1021/bi00865a047 |title=Comparison of Experimental Binding Data and Theoretical Models in Proteins Containing Subunits |year=1966 |last1=Koshland |first1=D. E. |last2=Nemethy |first2=G. |last3=Filmer |first3=D. |journal=Biochemistry |volume=5 |pages=365–85 |pmid=5938952 |issue=1}} Nonetheless, shortly after these theories were described, two groups of workers{{cite journal

|title = Treatment of enzyme kinetic data. II. The multisite case: comparison of allosteric models and a possible new mechanism

|last1 = Frieden | first1 = C

|journal = J. Biol. Chem.

|volume = 242

|year = 1967

|issue = 18 |pages = 4045–4052

|doi = 10.1016/S0021-9258(18)95776-5 |pmid = 6061697 |doi-access = free }}{{cite journal

|title = A theoretical study of the binding of small molecules to a polymerizing protein system: a model for allosteric effects

|last1 = Nichol | first1 = L W

|last2 = Jackson | first2 = W J H

|last3 = Winzor |first3 = D J

|journal = Biochemistry

|volume = 6

|year = 1967

|issue = 8 |pages = 2449–2456

|doi = 10.1021/bi00860a022

|pmid = 6049469 }} proposed what is now called the morpheein model and showed that it accounted for the regulatory behavior of glutamate dehydrogenase.{{cite journal

|last1 = Frieden | first1 = C

|last2 = Colman | first2 = R F

|title = Glutamate dehydrogenase concentration as a determinant in the effect of purine nucleotides on the enzymatiuc activity

|journal = J. Biol. Chem.

|volume = 242

|year = 1967

|pages = 1705–1715

| doi = 10.1016/S0021-9258(18)96059-X

| doi-access = free

}} Kurganov and Friedrich discussed models of this kind extensively in their books.{{cite book

|last1 = Kurganov | first1 = B I

|title = Allosteric Enzymes: Kinetic Behaviour

|pages = 151–248

|publisher = Wiley–Interscience

|place= Chichester

|isbn = 978-0471101956

|year = 1982

}}{{cite book

|last1 = Friedrich| first1 = P

|title =Supramolecular Enzyme Organization: Quaternary Structure and Beyond

|pages = 66–71

|publisher = Pergamon Press

|place = Oxford

|year = 1984

|isbn = 0-08-026376-3

}}

Implications for teaching about protein structure-function relationships

It is generally taught {{Citation needed|reason=Just a bald claim of what is "generally taught"|date=August 2022}} that a given amino acid sequence will have only one physiologically relevant (native) quaternary structure; morpheeins challenge this concept. The morpheein model does not require gross changes in the basic protein fold. The conformational differences that accompany conversion between oligomers may be similar to the protein motions necessary for function of some proteins.{{cite journal |doi=10.1016/j.cbpa.2003.12.006 |title=Exploring the range of protein flexibility, from a structural proteomics perspective |year=2004 |last1=Gerstein |first1=Mark |last2=Echols |first2=Nathaniel |journal=Current Opinion in Chemical Biology |volume=8 |pages=14–9 |pmid=15036151 |issue=1}} The morpheein model highlights the importance of conformational flexibility for protein functionality and offers a potential explanation for proteins showing non-Michaelis-Menten kinetics, hysteresis, and/or protein concentration dependent specific activity.

Implications for understanding the structural basis for disease

The term "conformational disease" generally encompasses mutations that result in misfolded proteins that aggregate, such as Alzheimer's and Creutzfeldt–Jakob diseases.{{cite journal |doi=10.1016/S0140-6736(97)02073-4 |title=Conformational disease |year=1997 |last1=Carrell |first1=Robin W |last2=Lomas |first2=David A |journal=The Lancet |volume=350 |issue=9071 |pmid=9228977 |pages=134–8|s2cid=39124185 }} In light of the discovery of morpheeins, however, this definition could be expanded to include mutations that shift an equilibrium of alternate oligomeric forms of a protein. An example of such a conformational disease is ALAD porphyria, which results from a mutation of porphobilinogen synthase that causes a shift in its morpheein equilibrium.

Table of proteins whose published behavior is consistent with that of a morpheein

class="wikitable sortable"
ProteinExample speciesEC numberCAS numberAlternate oligomersEvidence
Acetyl-CoA carboxylase-1Gallus domesticus{{EnzExplorer|6.4.1.2}}{{CAS|9023-93-2}}inactive dimer, active dimer, larger{{cite journal |doi=10.1042/BST20060223 |title=Regulation of acetyl-CoA carboxylase |year=2006 |last1=Boone |first1=A.N. |last2=Brownsey |first2=R.W. |last3=Elliott |first3=J.E. |last4=Kulpa |first4=J.E. |last5=Lee |first5=W.M. |journal=Biochemical Society Transactions |volume=34 |issue=2 |pages=223–7 |pmid=16545081}}Effector molecules impact multimerization,{{cite journal |doi=10.1016/j.molcel.2004.11.034 |title=A Mechanism for the Potent Inhibition of Eukaryotic Acetyl-Coenzyme a Carboxylase by Soraphen A, a Macrocyclic Polyketide Natural Product |year=2004 |last1=Shen |first1=Yang |last2=Volrath |first2=Sandra L. |last3=Weatherly |first3=Stephanie C. |last4=Elich |first4=Tedd D. |last5=Tong |first5=Liang |journal=Molecular Cell |volume=16 |issue=6 |pages=881–91 |pmid=15610732|doi-access=free }} Multiple/protein moonlighting functions
α-AcetylgalactosaminidaseBos taurus{{EnzExplorer|4.3.2.2}}{{CAS|9027-81-0}}inactive monomer, active tetramer{{cite journal |doi=10.1021/bi00782a021 |title=Association-dissociation and abnormal kinetics of bovine .alpha.-acetylgalactosaminidase |year=1971 |last1=Weissmann |first1=Bernard |last2=Wang |first2=Ching-Te |journal=Biochemistry |volume=10 |issue=6 |pages=1067–72 |pmid=5550813}}Substrate binding/turnover impacts multimerization, Protein concentration dependent specific activity,{{cite journal |doi=10.1021/bi00833a038 |title=Mammalian α-acetylgalactosaminidase. Occurrence, partial purification, and action on linkages in submaxillary mucins |year=1969 |last1=Weissmann |first1=Bernard |last2=Hinrichsen |first2=Dorotea F. |journal=Biochemistry |volume=8 |issue=5 |pages=2034–43 |pmid=5785223}} Different assemblies have different activities, Conformationally distinct oligomeric forms.
Adenylosuccinate lyaseBacillus subtilis{{EnzExplorer|4.3.2.2}}{{CAS|9027-81-0}}monomer, dimer, trimer, tetramer{{cite journal |doi=10.1021/bi701400c |title=Evaluation of Types of Interactions in Subunit Association in Bacillus subtilis Adenylosuccinate Lyase |year=2008 |last1=De Zoysa Ariyananda |first1=Lushanti |last2=Colman |first2=Roberta F. |journal=Biochemistry |volume=47 |issue=9 |pages=2923–34 |pmid=18237141}}Mutations shift the equilibrium of oligomers,{{cite journal |first1=Jennifer Brosius |last1=Palenchar |first2=Roberta F. |last2=Colman |year=2003 |title=Characterization of a Mutant Bacillus subtilis Adenylosuccinate Lyase Equivalent to a Mutant Enzyme Found in Human Adenylosuccinate Lyase Deficiency: Asparagine 276 Plays an Important Structural Role |journal=Biochemistry |volume=42 |issue=7 |pages=1831–41 |doi=10.1021/bi020640+ |pmid=12590570}} Oligomer-dependent kinetic parameters, Protein concentration dependent molecular weight
Aristolochene synthasePenicillium roqueforti{{EnzExplorer|4.2.3.9}}{{CAS|94185-89-4}}monomer, higher order{{cite journal |doi=10.1016/0003-9861(89)90204-X |title=Purification and characterization of the sesquiterpene cyclase aristolochene synthase from Penicillium roqueforti |year=1989 |last1=Hohn |first1=Thomas M. |last2=Plattner |first2=Ronald D. |journal=Archives of Biochemistry and Biophysics |volume=272 |pages=137–43 |pmid=2544140 |issue=1}}Protein concentration dependent specific activity{{cite journal |doi=10.1074/jbc.M000433200 |title=Crystal Structure Determination of Aristolochene Synthase from the Blue Cheese Mold, Penicillium roqueforti |year=2000 |last1=Caruthers |first1=J. M. |journal=Journal of Biological Chemistry |volume=275 |issue=33 |pages=25533–9 |pmid=10825154 |last2=Kang |first2=I |last3=Rynkiewicz |first3=MJ |last4=Cane |first4=DE |last5=Christianson|author5-link=David W. Christianson|first5=DW|doi-access=free }}
L-AsparaginaseLeptosphaeria michotii{{EnzExplorer|3.5.1.1}}{{CAS|9015-68-3}}dimer, tetramer, inactive octamer{{cite journal |doi=10.1111/j.1399-3054.1985.tb01215.x |title=L-Asparaginase activity in Leptosphaeria michotii. Isolation and properties of two forms of the enzyme |year=1985 |last1=Jerebzoff-Quintin |first1=Simonne |last2=Jerebzoff |first2=Stephan |journal=Physiologia Plantarum |volume=64 |pages=74–80}}Substrate binding/turnover impacts multimerization{{cite journal |doi=10.1016/j.jmb.2007.03.061 |pmc=1991333 |title=Crystal Structure and Allosteric Regulation of the Cytoplasmic Escherichia coli l-Asparaginase I |year=2007 |last1=Yun |first1=Mi-Kyung |last2=Nourse |first2=Amanda |last3=White |first3=Stephen W. |last4=Rock |first4=Charles O. |last5=Heath |first5=Richard J. |journal=Journal of Molecular Biology |volume=369 |issue=3 |pages=794–811 |pmid=17451745}}
AspartokinaseEscherichia coli{{EnzExplorer|2.7.2.4}} & {{EnzExplorer|1.1.1.3}}{{CAS|9012-50-4}}monomer, dimer, tetramer{{cite journal |doi=10.1073/pnas.77.6.3379 |pmid=6774337 |title=Sequential Folding of a Bifunctional Allosteric Protein |year=1980 |last1=Garel |first1=J.-R. |journal=Proceedings of the National Academy of Sciences |volume=77 |issue=6 |bibcode=1980PNAS...77.3379G |jstor=8892 |pages=3379–3383|pmc=349619 |doi-access=free }}{{cite journal |doi=10.1074/jbc.M605886200 |title=Structures of R- and T-state Escherichia coli Aspartokinase III: MECHANISMS OF THE ALLOSTERIC TRANSITION AND INHIBITION BY LYSINE |year=2006 |last1=Kotaka |first1=M. |last2=Ren |first2=J. |last3=Lockyer |first3=M. |last4=Hawkins |first4=A. R. |last5=Stammers |first5=D. K. |journal=Journal of Biological Chemistry |volume=281 |issue=42 |pages=31544–52 |pmid=16905770|doi-access= free}}Multiple/protein moonlighting functions,{{cite journal |pmid=163250 |year=1975 |last1=Ogilvie |first1=JW |last2=Vickers |first2=LP |last3=Clark |first3=RB |last4=Jones |first4=MM |title=Aspartokinase I-homoserine dehydrogenase I of Escherichia coli K12 (lambda). Activation by monovalent cations and an analysis of the effect of the adenosine triphosphate-magnesium ion complex on this activation process |volume=250 |issue=4 |pages=1242–50 |journal=The Journal of Biological Chemistry|doi=10.1016/S0021-9258(19)41805-X |doi-access=free }} Conformationally distinct oligomeric forms
ATPase of the ABCA1 transporterHomo sapiensdimer, tetramer{{cite journal |doi=10.1074/jbc.M601072200 |title=Transition from Dimers to Higher Oligomeric Forms Occurs during the ATPase Cycle of the ABCA1 Transporter |year=2006 |last1=Trompier |first1=D. |journal=Journal of Biological Chemistry |volume=281 |issue=29 |pages=20283–90 |pmid=16709568 |last2=Alibert |first2=M |last3=Davanture |first3=S |last4=Hamon |first4=Y |last5=Pierres |first5=M |last6=Chimini |first6=G|doi-access=free }}Substrate binding/turnover impacts multimerization
Biotin—(acetyl-CoA-carboxylase) ligase holoenzyme synthetaseEscherichia coli{{EnzExplorer|6.3.4.15}}{{CAS|37340-95-7}}monomer, dimer{{cite journal |doi=10.1021/bi991241q |title=Dimerization of theEscherichiacoliBiotin Repressor: Corepressor Function in Protein Assembly |year=1999 |last1=Eisenstein |first1=Edward |last2=Beckett |first2=Dorothy |journal=Biochemistry |volume=38 |issue=40 |pages=13077–84 |pmid=10529178}}Multiple/protein moonlighting functions, Different assemblies have different activities{{cite journal |doi=10.1021/bi9715019 |title=Coupling of Site-Specific DNA Binding to Protein Dimerization in Assembly of the Biotin Repressor−Biotin Operator Complex |year=1998 |last1=Streaker |first1=Emily D. |last2=Beckett |first2=Dorothy |journal=Biochemistry |volume=37 |issue=9 |pages=3210–9 |pmid=9485476}}
Chorismate mutaseEscherichia coli{{EnzExplorer|5.4.99.5}}{{CAS|9068-30-8}}dimer, trimer, hexamerConformationally distinct oligomeric forms{{cite journal |doi=10.1110/ps.051431605 |pmc=2279322 |title=Simultaneous optimization of enzyme activity and quaternary structure by directed evolution |year=2005 |last1=Vamvaca |first1=Katherina |last2=Butz |first2=Maren |last3=Walter |first3=Kai U. |last4=Taylor |first4=Sean V. |last5=Hilvert |first5=Donald |journal=Protein Science |volume=14 |issue=8 |pages=2103–14 |pmid=15987889}}
Citrate synthaseEscherichia coli{{EnzExplorer|2.3.3.1}}{{CAS|9027-96-7}}monomer, dimer, trimer, tetramer, pentamer, hexamer, dodecamer{{cite journal |doi=10.1021/bi00673a007 |title=Quaternary structure of citrate synthase from Escherichia coli K 12 |year=1975 |last1=Tong |first1=E. K. |last2=Duckworth |first2=Harry W. |journal=Biochemistry |volume=14 |issue=2 |pages=235–41 |pmid=1091285}}Substrate binding/turnover impacts multimerization, Characterized equilibrium of oligomers, Protein concentration dependent specific activity, pH-dependent oligomeric equilibrium
Cyanovirin-NNostoc ellipsosporum{{CAS|918555-82-5}}monomer and domain-swapped dimer{{cite journal |doi=10.1038/828 |title=Solution structure of cyanovirin-N, a potent HIV-inactivating protein |year=1998 |last1=Bewley |first1=Carole A. |last2=Gustafson |first2=Kirk R. |last3=Boyd |first3=Michael R. |last4=Covell |first4=David G. |last5=Bax |first5=Ad |last6=Clore |first6=G. Marius |last7=Gronenborn |first7=Angela M. |journal=Nature Structural Biology |volume=5 |issue=7 |pages=571–8 |pmid=9665171|s2cid=11367037 }}{{cite journal |doi=10.1006/jmbi.1999.2693 |title=Crystal structure of cyanovirin-N, a potent HIV-inactivating protein, shows unexpected domain swapping |year=1999 |last1=Yang |first1=Fan |last2=Bewley |first2=Carole A |last3=Louis |first3=John M |last4=Gustafson |first4=Kirk R |last5=Boyd |first5=Michael R |last6=Gronenborn |first6=Angela M |last7=Clore |first7=G.Marius |last8=Wlodawer |first8=Alexander |journal=Journal of Molecular Biology |volume=288 |issue=3 |pages=403–12 |pmid=10329150|s2cid=308708 }}Characterized equilibrium of oligomers,{{cite journal |pmid=15638789 |year=2005 |last1=Barrientos |first1=LG |last2=Gronenborn |first2=AM |title=The highly specific carbohydrate-binding protein cyanovirin-N: Structure, anti-HIV/Ebola activity and possibilities for therapy |volume=5 |issue=1 |pages=21–31 |journal=Mini Reviews in Medicinal Chemistry |doi=10.2174/1389557053402783}}{{cite journal |pmid=12015150 |year=2002 |last1=Barrientos |first1=LG |last2=Louis |first2=JM |last3=Botos |first3=I |last4=Mori |first4=T |last5=Han |first5=Z |last6=O'Keefe |first6=BR |last7=Boyd |first7=MR |last8=Wlodawer |first8=A |last9=Gronenborn |first9=AM | display-authors=8 |title=The domain-swapped dimer of cyanovirin-N is in a metastable folded state: Reconciliation of X-ray and NMR structures |volume=10 |issue=5 |pages=673–86 |journal=Structure |doi=10.1016/S0969-2126(02)00758-X|doi-access=free }} Conformationally distinct oligomeric forms
3-oxoacid CoA-transferaseSus scrofa domestica{{EnzExplorer|2.8.3.5}}{{CAS|9027-43-4}}dimer, tetramer{{cite journal |doi=10.1021/bi0003184 |title=Pig Heart CoA Transferase Exists as Two Oligomeric Forms Separated by a Large Kinetic Barrier |year=2000 |last1=Rochet |first1=Jean-Christophe |last2=Brownie |first2=Edward R. |last3=Oikawa |first3=Kim |last4=Hicks |first4=Leslie D. |last5=Fraser |first5=Marie E. |last6=James |first6=Michael N. G. |last7=Kay |first7=Cyril M. |last8=Bridger |first8=William A. |last9=Wolodko |first9=William T. | display-authors=8 |journal=Biochemistry |volume=39 |issue=37 |pages=11291–302 |pmid=10985774}}Chromatographically separable oligomers, Substrate might preferentially stabilize one form
Cystathionine β-synthaseHomo sapiens{{EnzExplorer|4.2.1.22}}{{CAS|9023-99-8}}multiple - ranges from dimer to 16-mer{{cite journal |doi=10.1021/bi060737m |title=Solvent-Accessible Cysteines in Human Cystathionine β-Synthase: Crucial Role of Cysteine 431 inS-Adenosyl-l-methionine Binding |year=2006 |last1=Frank |first1=Nina |last2=Kery |first2=Vladimir |last3=MacLean |first3=Kenneth N. |last4=Kraus |first4=Jan P. |journal=Biochemistry |volume=45 |issue=36 |pages=11021–9 |pmid=16953589}}Effector molecules impact multimerization,{{cite journal |doi=10.1021/bi602617f |pmc=3204387 |title=A Pathogenic Linked Mutation in the Catalytic Core of Human Cystathionine β-Synthase Disrupts Allosteric Regulation and Allows Kinetic Characterization of a Full-Length Dimer |year=2007 |last1=Sen |first1=Suvajit |last2=Banerjee |first2=Ruma |journal=Biochemistry |volume=46 |issue=13 |pages=4110–6 |pmid=17352495}} Mutations shift the equilibrium of oligomers,{{cite journal |doi=10.1006/abbi.1998.0723 |title=Trypsin Cleavage of Human Cystathionine β-Synthase into an Evolutionarily Conserved Active Core: Structural and Functional Consequences |year=1998 |last1=Kery |first1=Vladimir |last2=Poneleit |first2=Loelle |last3=Kraus |first3=Jan P. |journal=Archives of Biochemistry and Biophysics |volume=355 |issue=2 |pages=222–32 |pmid=9675031}} Different assemblies have different activities, disease-causing mutations at sites distant from active site{{cite journal |doi=10.1038/ng0598-91 |title=Correction of disease-causing CBS mutations in yeast |year=1998 |last1=Shan |first1=Xiaoyin |last2=Kruger |first2=Warren D. |journal=Nature Genetics |volume=19 |pages=91–3 |pmid=9590298 |issue=1|s2cid=47102642 }}
D-amino acid oxidase{{EnzExplorer|1.4.3.3}}{{CAS|9000-88-8}}monomers, dimers, higher-order oligomers{{cite journal |pmid=4380380 |year=1966 |last1=Antonini |first1=E |last2=Brunori |first2=M |last3=Bruzzesi |first3=R |last4=Chiancone |first4=E |last5=Massey |first5=V |title=Association-dissociation phenomena of D-amino acid oxidase |volume=241 |issue=10 |pages=2358–66 |journal=The Journal of Biological Chemistry|doi=10.1016/S0021-9258(18)96629-9 |doi-access=free }}{{cite journal |pmid=5911617 |year=1966 |last1=Massey |first1=V |last2=Curti |first2=B |last3=Ganther |first3=H |title=A temperature-dependent conformational change in D-amino acid oxidase and its effect on catalysis |volume=241 |issue=10 |pages=2347–57 |journal=The Journal of Biological Chemistry|doi=10.1016/S0021-9258(18)96628-7 |doi-access=free }}Oligomer-dependent kinetic parameters
Dihydrolipoamide dehydrogenaseSus scrofa domestica{{EnzExplorer|1.8.1.4}}{{CAS|9001-18-7}}monomer, two different dimer forms, tetramer{{cite journal |doi=10.1073/pnas.0610618104 |pmc=1851069 |title=Cryptic proteolytic activity of dihydrolipoamide dehydrogenase |year=2007 |last1=Babady |first1=N. E. |last2=Pang |first2=Y.-P. |last3=Elpeleg |first3=O. |last4=Isaya |first4=G. |journal=Proceedings of the National Academy of Sciences |volume=104 |issue=15 |pages=6158–63|bibcode = 2007PNAS..104.6158B |pmid=17404228|doi-access=free }}Multiple/protein moonlighting functions, Different assemblies have different activities, pH-dependent oligomeric equilibrium, Conformationally distinct oligomeric forms{{cite journal |doi=10.1111/j.1432-1033.1973.tb02679.x |title=Conformational Studies on Lipoamide Dehydrogenase from Pig Heart. 1. Interconversion of Dissociable and Non-Dissociable Forms |year=1973 |last1=Muiswinkel-Voetberg |first1=H. |last2=Visser |first2=Jaap |last3=Veeger |first3=Cornelis |journal=European Journal of Biochemistry |volume=33 |issue=2 |pages=265–70 |pmid=4348439|doi-access= }}{{cite journal |doi=10.1074/jbc.M414285200 |title=PH-dependent Substrate Preference of Pig Heart Lipoamide Dehydrogenase Varies with Oligomeric State: RESPONSE TO MITOCHONDRIAL MATRIX ACIDIFICATION |year=2005 |last1=Klyachko |first1=N. L. |journal=Journal of Biological Chemistry |volume=280 |issue=16 |pages=16106–14 |pmid=15710613 |last2=Shchedrina |first2=VA |last3=Efimov |first3=AV |last4=Kazakov |first4=SV |last5=Gazaryan |first5=IG |last6=Kristal |first6=BS |last7=Brown |first7=AM|doi-access=free }}{{cite journal |doi=10.1111/j.1432-1033.1973.tb02680.x |title=Conformational Studies on Lipoamide Dehydrogenase from Pig Heart. 2. Spectroscopic Studies on the Apoenzyme and the Monomeric and Dimeric Forms |year=1973 |last1=Muiswinkel-Voetberg |first1=H. |last2=Veeger |first2=Cornelis |journal=European Journal of Biochemistry |volume=33 |issue=2 |pages=271–8 |pmid=4348440|doi-access=free }}
Dopamine β-monooxygenaseBos taurus{{EnzExplorer|1.14.17.1}}{{CAS|9013-38-1}}dimers, tetramers{{cite journal |first1=Ashima |last1=Saxena |first2=Preston |last2=Hensley |first3=James C. |last3=Osborne |first4=Patrick J. |last4=Fleming |year=1985 |title=The pH-dependent Subunit Dissociation and Catalytic Activity of Bovine Dopamine β-Hydroxylase |journal=Journal of Biological Chemistry |pmid=3972830 |url=http://www.jbc.org/cgi/pmidlookup?view=long&pmid=3972830 |volume=260 |issue=6 |pages=3386–92|doi=10.1016/S0021-9258(19)83633-5 |doi-access=free }}{{cite journal |pmid=3711102 |year=1986 |last1=Dhawan |first1=S |last2=Hensley |first2=P |last3=Osborne Jr |first3=JC |last4=Fleming |first4=PJ |title=Adenosine 5'-diphosphate-dependent subunit dissociation of bovine dopamine beta-hydroxylase |volume=261 |issue=17 |pages=7680–4 |journal=The Journal of Biological Chemistry|doi=10.1016/S0021-9258(19)57453-1 |doi-access=free }}{{cite journal |doi=10.1146/annurev.bi.57.070188.003003 |title=Dopamine Beta-Hydroxylase of Adrenal Chromaffin Granules: Structure and Function |year=1988 |last1=Stewart |first1=L C |last2=Klinman |first2=J P |journal=Annual Review of Biochemistry |volume=57 |pages=551–92 |pmid=3052283}}Effector molecules impact multimerization, Characterized equilibrium of oligomers, Oligomer-dependent kinetic parameters
Geranylgeranyl pyrophosphate synthase / FarnesyltranstransferaseHomo sapiens{{EnzExplorer|2.5.1.29}}{{CAS|9032-58-0}}hexamer, octamer{{cite journal |doi=10.1074/jbc.274.9.5888 |title=Human Geranylgeranyl Diphosphate Synthase. CDNA CLONING AND EXPRESSION |year=1999 |last1=Kuzuguchi |first1=T. |journal=Journal of Biological Chemistry |volume=274 |issue=9 |pages=5888–94 |pmid=10026212 |last2=Morita |first2=Y |last3=Sagami |first3=I |last4=Sagami |first4=H |last5=Ogura |first5=K|doi-access= free}}{{cite journal |doi=10.1074/jbc.M602603200 |title=The Crystal Structure of Human Geranylgeranyl Pyrophosphate Synthase Reveals a Novel Hexameric Arrangement and Inhibitory Product Binding |year=2006 |last1=Kavanagh |first1=K. L. |journal=Journal of Biological Chemistry |volume=281 |issue=31 |pages=22004–12 |pmid=16698791 |last2=Dunford |first2=JE |last3=Bunkoczi |first3=G |last4=Russell |first4=RG |last5=Oppermann |first5=U|doi-access=free |url=https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A16095/datastream/PDF/Kavanagh-2006-The_crystal_structure_of_human-%28published_version%29.pdf }}{{cite journal |doi=10.1093/jb/mvm144 |title=Human Geranylgeranyl Diphosphate Synthase is an Octamer in Solution |year=2007 |last1=Miyagi |first1=Y. |last2=Matsumura |first2=Y. |last3=Sagami |first3=H. |journal=Journal of Biochemistry |volume=142 |issue=3 |pages=377–81 |pmid=17646172}}Effector molecules impact multimerization
GDP-mannose 6-dehydrogenasePseudomonas aeruginosa{{EnzExplorer|1.1.1.132}}{{CAS|37250-63-8}}trimer, 2 tetramers, and hexamer{{cite journal |doi=10.1021/bi027328k |title=Crystal Structure of GDP-Mannose Dehydrogenase: A Key Enzyme of Alginate Biosynthesis inP. Aeruginosa |year=2003 |last1=Snook |first1=Christopher F. |last2=Tipton |first2=Peter A. |last3=Beamer |first3=Lesa J. |journal=Biochemistry |volume=42 |issue=16 |pages=4658–68 |pmid=12705829}}{{cite journal |pmid=2470755 |year=1989 |last1=Roychoudhury |first1=S |last2=May |first2=TB |last3=Gill |first3=JF |last4=Singh |first4=SK |last5=Feingold |first5=DS |last6=Chakrabarty |first6=AM |title=Purification and characterization of guanosine diphospho-D-mannose dehydrogenase. A key enzyme in the biosynthesis of alginate by Pseudomonas aeruginosa |volume=264 |issue=16 |pages=9380–5 |journal=The Journal of Biological Chemistry|doi=10.1016/S0021-9258(18)60542-3 |doi-access=free }}Protein concentration dependent specific activity,{{cite journal |doi=10.1021/bi025862m |title=Allosterism and Cooperativity inPseudomonas aeruginosaGDP-Mannose Dehydrogenase |year=2002 |last1=Naught |first1=Laura E. |last2=Gilbert |first2=Sunny |last3=Imhoff |first3=Rebecca |last4=Snook |first4=Christopher |last5=Beamer |first5=Lesa |last6=Tipton |first6=Peter |journal=Biochemistry |volume=41 |issue=30 |pages=9637–45 |pmid=12135385}} Kinetic hysteresis
Glutamate dehydrogenaseBos taurus{{EnzExplorer|1.4.1.2}}{{CAS|9001-46-1}}active & inactive hexamers, higher order{{cite book |doi=10.1002/9780470122846.ch6 |chapter=Glutamate Dehydrogenase—ligand Complexes and Their Relationship to the Mechanism of the Reaction |title=Advances in Enzymology and Related Areas of Molecular Biology |volume=39 |year=2006 |last1=Fisher |first1=Harvey F. |isbn=978-0-470-12284-6 |pages=[https://archive.org/details/advancesinenzymo0039unse/page/369 369–417] |pmid=4147773 |series=Advances in Enzymology - and Related Areas of Molecular Biology |chapter-url=https://archive.org/details/advancesinenzymo0039unse/page/369 }}Effector molecules impact multimerization,{{cite journal |pmid=4402280 |year=1972 |last1=Huang |first1=CY |last2=Frieden |first2=C |title=The mechanism of ligand-induced structural changes in glutamate dehydrogenase. Studies of the rate of depolymerization and isomerization effected by coenzymes and guanine nucleotides |volume=247 |issue=11 |pages=3638–46 |journal=The Journal of Biological Chemistry|doi=10.1016/S0021-9258(19)45188-0 |doi-access=free }} Characterized equilibrium of oligomers
Glutamate racemaseMycobacterium tuberculosis, Escherichia coli, Bacillus subtilis, Aquifex pyrophilus{{EnzExplorer|5.1.1.3}}{{CAS|9024-08-02}}monomer, 2 dimers, tetramer{{cite journal |doi=10.1007/s007920050114 |title=Molecular cloning, expression, and characterization of a thermostable glutamate racemase from a hyperthermophilic bacterium, Aquifex pyrophilus |year=1999 |last1=Kim |first1=Sang Suk |last2=Choi |first2=I.-G. |last3=Kim |first3=Sung-Hou |last4=Yu |first4=Y. G. |journal=Extremophiles |volume=3 |issue=3 |pages=175–83 |pmid=10484173|s2cid=709039 }}{{cite journal |doi=10.1038/nature05689 |title=Exploitation of structural and regulatory diversity in glutamate racemases |year=2007 |last1=Lundqvist |first1=Tomas |last2=Fisher |first2=Stewart L. |last3=Kern |first3=Gunther |last4=Folmer |first4=Rutger H. A. |last5=Xue |first5=Yafeng |last6=Newton |first6=D. Trevor |last7=Keating |first7=Thomas A. |last8=Alm |first8=Richard A. |last9=De Jonge |first9=Boudewijn L. M. | display-authors=8 |journal=Nature |volume=447 |issue=7146 |pages=817–22 |pmid=17568739|bibcode = 2007Natur.447..817L |s2cid=4408683 }}{{cite journal |doi=10.1016/j.jmb.2007.05.093 |pmc=2736553 |title=Structural and Functional Analysis of Two Glutamate Racemase Isozymes from Bacillus anthracis and Implications for Inhibitor Design |year=2007 |last1=May |first1=Melissa |last2=Mehboob |first2=Shahila |last3=Mulhearn |first3=Debbie C. |last4=Wang |first4=Zhiqiang |last5=Yu |first5=Huidong |last6=Thatcher |first6=Gregory R.J. |last7=Santarsiero |first7=Bernard D. |last8=Johnson |first8=Michael E. |last9=Mesecar |first9=Andrew D. | display-authors=8 |journal=Journal of Molecular Biology |volume=371 |issue=5 |pages=1219–37 |pmid=17610893}}{{cite journal |doi=10.1107/S0907444904021134 |title=Expression, purification and preliminary X-ray analysis of crystals ofBacillus subtilisglutamate racemase |year=2004 |last1=Taal |first1=Makie A. |last2=Sedelnikova |first2=Svetlana E. |last3=Ruzheinikov |first3=Sergey N. |last4=Baker |first4=Patrick J. |last5=Rice |first5=David W. |journal=Acta Crystallographica Section D |volume=60 |issue=11 |pages=2031–4 |pmid=15502318|doi-access=free |bibcode=2004AcCrD..60.2031T }}{{cite journal |doi=10.1016/j.jmb.2007.05.003 |title=Structural Basis for Glutamate Racemase Inhibition |year=2007 |last1=Kim |first1=Kook-Han |last2=Bong |first2=Young-Jong |last3=Park |first3=Joon Kyu |last4=Shin |first4=Key-Jung |last5=Hwang |first5=Kwang Yeon |last6=Kim |first6=Eunice Eunkyeong |journal=Journal of Molecular Biology |volume=372 |issue=2 |pages=434–43 |pmid=17658548}}Multiple/protein moonlighting functions,{{cite journal |doi=10.1074/jbc.C200253200 |title=Glutamate Racemase is an Endogenous DNA Gyrase Inhibitor |year=2002 |last1=Ashiuchi |first1=M. |journal=Journal of Biological Chemistry |volume=277 |issue=42 |pages=39070–3 |pmid=12213801 |last2=Kuwana |first2=E |last3=Yamamoto |first3=T |last4=Komatsu |first4=K |last5=Soda |first5=K |last6=Misono |first6=H|doi-access=free |hdl=10126/3383 |hdl-access=free }}{{cite journal |doi=10.1093/oxfordjournals.jbchem.a022055 |title=Properties of Glutamate Racemase from Bacillus subtilis IFO 3336 Producing Poly- -Glutamate |year=1998 |last1=Ashiuchi |first1=M. |last2=Tani |first2=K. |last3=Soda |first3=K. |last4=Misono |first4=H. |journal=Journal of Biochemistry |volume=123 |issue=6 |pages=1156–63 |pmid=9604005}}{{cite journal |doi=10.1099/mic.0.2008/020933-0 |title=Moonlighting function of glutamate racemase from Mycobacterium tuberculosis: Racemization and DNA gyrase inhibition are two independent activities of the enzyme |year=2008 |last1=Sengupta |first1=S. |last2=Ghosh |first2=S. |last3=Nagaraja |first3=V. |journal=Microbiology |volume=154 |issue=9 |pmid=18757813 |pages=2796–803|doi-access=free }} Characterized equilibrium of oligomers, Conformationally distinct oligomeric forms
Glyceraldehyde-3-phosphate dehydrogenaseOryctolagus cuniculas, Sus scrofa domestica{{EnzExplorer| 1.2.1.12}}{{CAS|9001-50-7}}monomer, dimer, tetramer{{cite journal |doi=10.1016/S0167-4838(99)00119-3 |title=New insights into an old protein: The functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase |year=1999 |last1=Sirover |first1=Michael A |journal=Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology |volume=1432 |issue=2 |pmid=10407139 |pages=159–84 }} Characterized equilibrium of oligomers,{{cite journal |pmid=4312250 |year=1969 |last1=Constantinides |first1=SM |last2=Deal Jr |first2=WC |title=Reversible dissociation of tetrameric rabbit muscle glyceraldehyde 3-phosphate dehydrogenase into dimers or monomers by adenosine triphosphate |volume=244 |issue=20 |pages=5695–702 |journal=The Journal of Biological Chemistry |doi=10.1016/S0021-9258(18)63615-4 |doi-access=free }} Different assemblies have different activities{{cite journal |pmid=6885722 |year=1983 |last1=Kumagai |first1=H |last2=Sakai |first2=H |title=A porcine brain protein (35 K protein) which bundles microtubules and its identification as glyceraldehyde 3-phosphate dehydrogenase |volume=93 |issue=5 |pages=1259–69 |journal=Journal of Biochemistry|doi=10.1093/oxfordjournals.jbchem.a134260 }}
Glycerol kinaseEscherichia coli{{EnzExplorer|2.7.1.30}}{{CAS|9030-66-4}}monomer and 2 tetramers{{cite journal |doi=10.1021/bi00617a011 |title=Subunit dissociation in the allosteric regulation of glycerol kinase from Escherichia coli. 2. Physical evidence |year=1978 |last1=De Riel |first1=Jon K. |last2=Paulus |first2=Henry |journal=Biochemistry |volume=17 |issue=24 |pages=5141–6 |pmid=215195}}{{cite journal |doi=10.1021/bi00617a010 |title=Subunit dissociation in the allosteric regulation of glycerol kinase from Escherichia coli. 1. Kinetic evidence |year=1978 |last1=De Riel |first1=Jon K. |last2=Paulus |first2=Henry |journal=Biochemistry |volume=17 |issue=24 |pages=5134–40 |pmid=215194}}{{cite journal |doi=10.1021/bi00617a012 |title=Subunit dissociation in the allosteric regulation of glycerol kinase from Escherichia coli. 3. Role in desensitization |year=1978 |last1=De Riel |first1=Jon K. |last2=Paulus |first2=Henry |journal=Biochemistry |volume=17 |issue=24 |pages=5146–50 |pmid=31903}}Characterized equilibrium of oligomers,{{cite journal |doi=10.1016/S0969-2126(98)00140-3 |title=Glycerol kinase from Escherichia coli and an Ala65→Thr mutant: The crystal structures reveal conformational changes with implications for allosteric regulation |year=1998 |last1=Feese |first1=Michael D |last2=Faber |first2=H Rick |last3=Bystrom |first3=Cory E |last4=Pettigrew |first4=Donald W |last5=Remington |first5=S James |journal=Structure |volume=6 |issue=11 |pages=1407–18 |pmid=9817843|doi-access=free }} Conformationally distinct oligomeric forms,{{cite journal |doi=10.1021/bi982460z |title=Crystal Structures ofEscherichia coliGlycerol Kinase Variant S58→W in Complex with Nonhydrolyzable ATP Analogues Reveal a Putative Active Conformation of the Enzyme as a Result of Domain Motion |year=1999 |last1=Bystrom |first1=Cory E. |last2=Pettigrew |first2=Donald W. |last3=Branchaud |first3=Bruce P. |last4=O'Brien |first4=Patrick |last5=Remington |first5=S. James |journal=Biochemistry |volume=38 |issue=12 |pages=3508–18 |pmid=10090737}} Effector functions by preventing domain motion
HIV-IntegraseHuman immunodeficiency virus-1{{EnzExplorer|2.7.7.-}}monomer, dimer, tetramer, higher order{{cite journal |doi=10.1021/bi000397j |title=Oligomeric States of the HIV-1 Integrase As Measured by Time-Resolved Fluorescence Anisotropy |year=2000 |last1=Deprez |first1=Eric |last2=Tauc |first2=Patrick |last3=Leh |first3=Hervé |last4=Mouscadet |first4=Jean-François |last5=Auclair |first5=Christian |last6=Brochon |first6=Jean-Claude |journal=Biochemistry |volume=39 |issue=31 |pages=9275–84 |pmid=10924120}}{{cite journal |doi=10.1073/pnas.181024498 |pmc=56920 |title=DNA binding induces dissociation of the multimeric form of HIV-1 integrase: A time-resolved fluorescence anisotropy study |year=2001 |last1=Deprez |first1=E. |last2=Tauc |first2=P. |last3=Leh |first3=H. |last4=Mouscadet |first4=J.-F. |last5=Auclair |first5=C. |last6=Hawkins |first6=M. E. |last7=Brochon |first7=J.-C. |journal=Proceedings of the National Academy of Sciences |volume=98 |issue=18 |pages=10090–5|bibcode = 2001PNAS...9810090D |pmid=11504911|doi-access=free }}{{cite journal |doi=10.1093/nar/gki241 |pmc=549407 |title=HIV-1 integrase crosslinked oligomers are active in vitro |year=2005 |last1=Faure |first1=A. l. |journal=Nucleic Acids Research |volume=33 |issue=3 |pages=977–86 |pmid=15718297 |last2=Calmels |first2=C |last3=Desjobert |first3=C |last4=Castroviejo |first4=M |last5=Caumont-Sarcos |first5=A |last6=Tarrago-Litvak |first6=L |last7=Litvak |first7=S |last8=Parissi |first8=V}}Effector molecules impact multimerization,{{cite journal |doi=10.1074/jbc.M602198200 |title=Relationship between the Oligomeric Status of HIV-1 Integrase on DNA and Enzymatic Activity |year=2006 |last1=Guiot |first1=E. |journal=Journal of Biological Chemistry |volume=281 |issue=32 |pages=22707–19 |pmid=16774912 |last2=Carayon |first2=K |last3=Delelis |first3=O |last4=Simon |first4=F |last5=Tauc |first5=P |last6=Zubin |first6=E |last7=Gottikh |first7=M |last8=Mouscadet |first8=JF |last9=Brochon |first9=JC| display-authors=8 |doi-access=free }} Multiple/protein moonlighting functions, Different assemblies have different activities
HPr-Kinase/phosphataseBacillus subtilis, Lactobacillus casei, Mycoplasma pneumoniae, Staphylococcus xylosus{{EnzExplorer|2.7.1.-}}/ {{EnzExplorer|3.1.3.-}}{{CAS|9026-43-1}}monomers, dimers, trimers, hexamers{{cite journal |doi=10.1093/emboj/20.15.3917 |pmc=149164 |title=X-ray structure of HPr kinase: A bacterial protein kinase with a P-loop nucleotide-binding domain |year=2001 |last1=Fieulaine |first1=S. |journal=The EMBO Journal |volume=20 |issue=15 |pages=3917–27 |pmid=11483495 |last2=Morera |first2=S |last3=Poncet |first3=S |last4=Monedero |first4=V |last5=Gueguen-Chaignon |first5=V |last6=Galinier |first6=A |last7=Janin |first7=J |last8=Deutscher |first8=J |last9=Nessler |first9=S| display-authors=8 }}{{cite journal |doi=10.1073/pnas.052461499 |jstor=3058148 |bibcode=2002PNAS...99.3458M |title=Structure of the full-length HPr kinase/phosphatase from Staphylococcus xylosus at 1.95 Å resolution: Mimicking the product/substrate of the phospho transfer reactions |first1=José Antonio |last1=Márquez |first2=Sonja |last2=Hasenbein |first3=Brigitte |last3=Koch |first4=Sonia |last4=Fieulaine |first5=Sylvie |last5=Nessler |first6=Robert B. |last6=Russell |first7=Wolfgang |last7=Hengstenberg |first8=Klaus |last8=Scheffzek |journal=Proceedings of the National Academy of Sciences |volume=99 |issue=6 |pmid=11904409 |year=2002 |pages=3458–63 |pmc=122545|doi-access=free }}{{cite journal |doi=10.1016/S0022-2836(02)01378-5 |title=Crystal Structure of HPr Kinase/Phosphatase from Mycoplasma pneumoniae |year=2003 |last1=Allen |first1=Gregory S. |last2=Steinhauer |first2=Katrin |last3=Hillen |first3=Wolfgang |last4=Stülke |first4=Jörg |last5=Brennan |first5=Richard G. |journal=Journal of Molecular Biology |volume=326 |issue=4 |pages=1203–17 |pmid=12589763}}{{cite journal |doi=10.1016/j.bbapap.2003.11.018 |title=HPr kinase/phosphorylase, a Walker motif A-containing bifunctional sensor enzyme controlling catabolite repression in Gram-positive bacteria |year=2004 |last1=Poncet |first1=Sandrine |last2=Mijakovic |first2=Ivan |last3=Nessler |first3=Sylvie |last4=Gueguen-Chaignon |first4=Virginie |last5=Chaptal |first5=Vincent |last6=Galinier |first6=Anne |last7=Boël |first7=Grégory |last8=Mazé |first8=Alain |last9=Deutscher |first9=Josef |journal=Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics | display-authors=8 |volume=1697 |pmid=15023355 |pages=123–35 |issue=1–2}}{{cite journal |doi=10.1074/jbc.M209052200 |title=Properties and Regulation of the Bifunctional Enzyme HPr Kinase/Phosphatase in Bacillus subtilis |year=2002 |last1=Ramstrom |first1=H. |journal=Journal of Biological Chemistry |volume=278 |issue=2 |pages=1174–85 |pmid=12411438 |last2=Sanglier |first2=S |last3=Leize-Wagner |first3=E |last4=Philippe |first4=C |last5=Van Dorsselaer |first5=A |last6=Haiech |first6=J|doi-access=free }}{{cite journal |doi=10.1074/jbc.275.3.1773 |title=The HPr Kinase from Bacillus subtilis is a Homo-oligomeric Enzyme Which Exhibits Strong Positive Cooperativity for Nucleotide and Fructose 1,6-Bisphosphate Binding |year=2000 |last1=Jault |first1=J.-M. |journal=Journal of Biological Chemistry |volume=275 |issue=3 |pages=1773–80 |pmid=10636874 |last2=Fieulaine |first2=S |last3=Nessler |first3=S |last4=Gonzalo |first4=P |last5=Di Pietro |first5=A |last6=Deutscher |first6=J |last7=Galinier |first7=A|doi-access=free |url=https://hal.inrae.fr/hal-02699179/file/56516_20100921021153828_1.pdf }}Effector molecules impact multimerization, Multiple/protein moonlighting functions, Different assemblies have different activities, pH-dependent oligomeric equilibrium
Lactate dehydrogenaseBacillus stearothermophilus{{EnzExplorer|1.1.1.27}}{{CAS|9001-60-9}}2 dimers, tetramer{{cite journal |doi=10.1016/0167-4838(85)90319-X |title=Changes in the state of subunit association of lactate dehydrogenase from Bacillus stearothermophilus |year=1985 |last1=Clarke |first1=Anthony R. |last2=Waldman |first2=Adam D.B. |last3=Munro |first3=Ian |last4=Holbrook |first4=J.John |journal=Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology |volume=828 |issue=3 |pmid=3986214 |pages=375–9}}{{cite journal |doi=10.1016/0167-4838(85)90250-X |title=The rates of defined changes in protein structure during the catalytic cycle of lactate dehydrogenase |year=1985 |last1=Clarke |first1=Anthony R. |last2=Waldman |first2=Adam D.B. |last3=Hart |first3=Keith W. |last4=John Holbrook |first4=J. |journal=Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology |volume=829 |issue=3 |pmid=4005269 |pages=397–407}}Effector molecules impact multimerization, Characterized equilibrium of oligomers, Protein concentration dependent specific activity, Mutations shift the equilibrium of oligomers,{{cite journal |doi=10.1016/0167-4838(87)90234-2 |title=A single amino acid substitution deregulates a bacterial lactate dehydrogenase and stabilizes its tetrameric structure |year=1987 |last1=Clarke |first1=Anthony R. |last2=Wigley |first2=Dale B. |last3=Barstow |first3=David A. |last4=Chia |first4=William N. |last5=Atkinson |first5=Tony |last6=Holbrook |first6=J.John |journal=Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology |volume=913 |pmid=3580377 |pages=72–80 |issue=1}} Oligomer-dependent kinetic parameters, Conformationally distinct oligomeric forms{{cite journal |doi=10.1006/jmbi.1994.1318 |title=Allosteric Activation in Bacillus stearothermophilus Lactate Dehydrogenase Investigated by an X-ray Crystallographic Analysis of a Mutant Designed to Prevent Tetramerization of the Enzyme |year=1994 |last1=Cameron |first1=Alexander D. |last2=Roper |first2=David I. |last3=Moreton |first3=Kathleen M. |last4=Muirhead |first4=Hilary |last5=Holbrook |first5=J.John |last6=Wigley |first6=Dale B. |journal=Journal of Molecular Biology |volume=238 |issue=4 |pages=615–25 |pmid=8176749}}
Lon proteaseEscherichia coli, Mycobacterium smegmatis{{EnzExplorer|3.4.21.53}}{{CAS|79818-35-2}}monomer, dimer, trimer, tetramer{{cite journal |doi=10.1021/bi980945h |title=Functional Role of the N-Terminal Region of the Lon Protease fromMycobacterium smegmatis |year=1998 |last1=Roudiak |first1=Stanislav G. |last2=Shrader |first2=Thomas E. |journal=Biochemistry |volume=37 |issue=32 |pages=11255–63 |pmid=9698372}}{{cite journal |doi=10.1021/bi0102508 |title=Mg2+-Linked Oligomerization Modulates the Catalytic Activity of the Lon (La) Protease from Mycobacterium smegmatis |year=2001 |last1=Rudyak |first1=Stanislav G. |last2=Brenowitz |first2=Michael |last3=Shrader |first3=Thomas E. |journal=Biochemistry |volume=40 |issue=31 |pages=9317–23 |pmid=11478899}}Effector molecules impact multimerization, Substrate binding/turnover impacts multimerization, Protein concentration dependent specific activity,{{cite journal |doi=10.1021/bi052377t |pmc=2515378 |title=Single-Turnover Kinetic Experiments Confirm the Existence of High- and Low-Affinity ATPase Sites inEscherichia coliLon Protease |year=2006 |last1=Vineyard |first1=Diana |last2=Patterson-Ward |first2=Jessica |last3=Lee |first3=Irene |journal=Biochemistry |volume=45 |issue=14 |pages=4602–10 |pmid=16584195}} Kinetic hysteresis
Mitochondrial NAD(P)+ Malic enzyme / malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+)Homo sapiens{{EnzExplorer|1.1.1.40}}{{CAS|9028-47-1}}monomer, 2 dimers, tetramer{{cite journal |doi=10.1016/S0969-2126(02)00788-8 |title=Molecular Mechanism for the Regulation of Human Mitochondrial NAD(P)+-Dependent Malic Enzyme by ATP and Fumarate |year=2002 |last1=Yang |first1=Zhiru |last2=Lanks |first2=Charles W. |last3=Tong |first3=Liang |journal=Structure |volume=10 |issue=7 |pages=951–60 |pmid=12121650|doi-access=free }}{{cite journal |doi=10.1016/0031-9422(92)80322-6 |title=NADP-malic enzyme from plants |year=1992 |last1=Gerald e |first1=Edwards |last2=Carlos s |first2=Andreo |journal=Phytochemistry |volume=31 |issue=6 |pages=1845–57 |pmid=1368216|bibcode=1992PChem..31.1845G }}Effector molecules impact multimerization, Mutations shift the equilibrium of oligomers,{{cite journal |doi=10.1074/jbc.M109.005082 |title=Functional Roles of the Tetramer Organization of Malic Enzyme |year=2009 |last1=Hsieh |first1=J.-Y. |last2=Chen |first2=S.-H. |last3=Hung |first3=H.-C. |journal=Journal of Biological Chemistry |volume=284 |issue=27 |pages=18096–105 |pmid=19416979 |pmc=2709377|doi-access=free }} Kinetic hysteresis,
PeroxiredoxinsSalmonella typhimurium{{EnzExplorer|1.6.4.-}} & {{EnzExplorer|1.11.1.15}}{{CAS|207137-51-7}}2 dimers, decamerConformationally distinct oligomeric forms,{{cite journal |doi=10.1016/j.abb.2004.09.006 |title=Bacterial defenses against oxidants: Mechanistic features of cysteine-based peroxidases and their flavoprotein reductases |year=2005 |last1=Poole |first1=Leslie B. |journal=Archives of Biochemistry and Biophysics |volume=433 |pages=240–54 |pmid=15581580 |issue=1}} Different assemblies have different activities{{cite journal |doi=10.1111/j.1742-4658.2009.06984.x |title=Typical 2-Cys peroxiredoxins - modulation by covalent transformations and noncovalent interactions |year=2009 |last1=Aran |first1=Martin |last2=Ferrero |first2=Diego S. |last3=Pagano |first3=Eduardo |last4=Wolosiuk |first4=Ricardo A. |journal=FEBS Journal |volume=276 |issue=9 |pages=2478–93 |pmid=19476489|s2cid=1698327 |hdl=11336/20656 |hdl-access=free }}
Phenylalanine hydroxylaseHomo sapiens{{EnzExplorer|1.14.16.1}}{{CAS|9029-73-6}}high activity tetramer, low activity tetramer{{cite journal |doi=10.1046/j.1432-1327.2001.01958.x |title=A comparison of kinetic and regulatory properties of the tetrameric and dimeric forms of wild-type and Thr427→Pro mutant human phenylalanine hydroxylase |year=2001 |last1=Bjørgo |first1=Elisa |last2=De Carvalho |first2=Raquel Margarida Negrão |last3=Flatmark |first3=Torgeir|author3-link=Torgeir Flatmark |journal=European Journal of Biochemistry |volume=268 |issue=4 |pages=997–1005 |pmid=11179966}}Substrate binding/turnover impacts multimerization,{{cite journal |pmid=7887915 |year=1995 |last1=Martinez |first1=Aurora |last2=Knappskog |first2=Per M. |last3=Olafsdottir |first3=Sigridur |last4=Døskeland |first4=Anne P. |last5=Eiken |first5=Hans Geir |last6=Svebak |first6=Randi Myrseth |last7=Bozzini |first7=MeriLisa |last8=Apold |first8=Jaran |last9=Flatmark |first9=Torgeir|author9-link=Torgeir Flatmark | display-authors=8 |title=Expression of recombinant human phenylalanine hydroxylase as fusion protein in Escherichia coli circumvents proteolytic degradation by host cell proteases. Isolation and characterization of the wild-type enzyme |volume=306 |issue=2 |pages=589–97 |pmc=1136558 |journal=The Biochemical Journal |doi=10.1042/bj3060589 }}{{cite journal |doi=10.1111/j.1432-1033.1996.0813r.x |title=Structure/Function Relationships in Human Phenylalanine Hydroxylase. Effect of Terminal Deletions on the Oligomerization, Activation and Cooperativity of Substrate Binding to the Enzyme |year=1996 |last1=Knappskog |first1=Per M. |last2=Flatmark |first2=Torgeir|author2-link=Torgeir Flatmark |last3=Aarden |first3=Johanna M. |last4=Haavik |first4=Jan |last5=Martinez |first5=Aurora |journal=European Journal of Biochemistry |volume=242 |issue=3 |pages=813–21 |pmid=9022714|doi-access=free }} Conformationally distinct oligomeric forms{{cite journal |doi=10.1021/bi00312a007 |title=Spectroscopic investigation of ligand interaction with hepatic phenylalanine hydroxylase: Evidence for a conformational change associated with activation |year=1984 |last1=Phillips |first1=Robert S. |last2=Parniak |first2=Michael A. |last3=Kaufman |first3=Seymour |journal=Biochemistry |volume=23 |issue=17 |pages=3836–42 |pmid=6487579}}{{cite journal |doi=10.1074/jbc.273.27.16962 |title=Structure of Tetrameric Human Phenylalanine Hydroxylase and Its Implications for Phenylketonuria |year=1998 |last1=Fusetti |first1=F. |journal=Journal of Biological Chemistry |volume=273 |issue=27 |pages=16962–7 |pmid=9642259 |last2=Erlandsen |first2=H |last3=Flatmark|author3-link=Torgeir Flatmark |first3=T |last4=Stevens |first4=RC|doi-access=free }}
Phosphoenolpyruvate carboxylaseEscherichia coli, Zea mays{{EnzExplorer4.1.1.31}}{{CAS|9067-77-0}}inactive dimer, active tetramer{{cite journal |pmid=4560418 |year=1972 |last1=Wohl |first1=RC |last2=Markus |first2=G |title=Phosphoenolpyruvate carboxylase of Escherichia coli. Purification and some properties |volume=247 |issue=18 |pages=5785–92 |journal=The Journal of Biological Chemistry|doi=10.1016/S0021-9258(19)44827-8 |doi-access=free }}Effector molecules impact multimerization, Characterized equilibrium of oligomers, Kinetic hysteresis, Conformationally distinct oligomeric forms{{cite journal |doi=10.1016/S0003-9861(03)00170-X |title=Phosphoenolpyruvate carboxylase: Three-dimensional structure and molecular mechanisms |year=2003 |last1=Kai |first1=Yasushi |last2=Matsumura |first2=Hiroyoshi |last3=Izui |first3=Katsura |journal=Archives of Biochemistry and Biophysics |volume=414 |issue=2 |pages=170–9 |pmid=12781768}}
PhosphofructokinaseBacillus stearothermophilus, Thermus thermophilus{{EnzExplorer|2.7.1.11}}{{CAS|9001-80-3}}inactive dimer, active tetramer{{cite journal |doi=10.1016/S0022-2836(05)80171-8 |title=Tetramer-dimer conversion of phosphofructokinase from Thermus thermophilus induced by its allosteric effectors |year=1990 |last1=Xu |first1=Jing |last2=Oshima |first2=Tairo |last3=Yoshida |first3=Masasuke |journal=Journal of Molecular Biology |volume=215 |issue=4 |pages=597–606 |pmid=2146397}}Effector molecules impact multimerization, Characterized equilibrium of oligomers
Polyphenol oxidaseAgaricus bisporus, Malus domestica, Lactuca sativa L.{{EnzExplorer|1.10.3.1}}{{CAS|9002-10-2}}monomer, trimer, tetramer, octamer, dodecamer{{cite journal |pmid=14284774 |year=1965 |last1=Jolley Jr |first1=RL |last2=Mason |first2=HS |title=The Multiple Forms of Mushroom Tyrosinase. Interconversion |volume=240 |pages=PC1489–91 |journal=The Journal of Biological Chemistry|doi=10.1016/S0021-9258(18)97603-9 |doi-access=free }}{{cite journal |pmid=4975157 |year=1969 |last1=Jolley Jr |first1=RL |last2=Robb |first2=DA |last3=Mason |first3=HS |title=The multiple forms of mushroom tyrosinase. Association-dissociation phenomena |volume=244 |issue=6 |pages=1593–9 |journal=The Journal of Biological Chemistry|doi=10.1016/S0021-9258(18)91800-4 |doi-access=free }}Multiple/protein moonlighting functions,{{cite journal |pmid=18135760 |year=1949 |last1=Mallette |first1=MF |last2=Dawson |first2=CR |title=On the nature of highly purified mushroom tyrosinase preparations |volume=23 |issue=1 |pages=29–44 |journal=Archives of Biochemistry}} Substrate binding/turnover impacts multimerization,{{cite journal |doi=10.1006/bbrc.2001.6014 |title=Hysteresis and Positive Cooperativity of Iceberg Lettuce Polyphenol Oxidase |year=2001 |last1=Chazarra |first1=Soledad |last2=García-Carmona |first2=Francisco |last3=Cabanes |first3=Juana |journal=Biochemical and Biophysical Research Communications |volume=289 |issue=3 |pages=769–75 |pmid=11726215}} Different assemblies have different activities,{{cite journal |doi=10.1016/S0031-9422(00)86315-3 |title=Interconversion of sub-units of catechol oxidase from apple chloroplasts |year=1968 |last1=Harel |first1=E. |last2=Mayer |first2=A.M. |journal=Phytochemistry |volume=7 |issue=2 |pages=199–204|bibcode=1968PChem...7..199H }} Kinetic hysteresis
Porphobilinogen synthaseDrosophila melanogaster, Danio rerio{{EnzExplorer|4.2.1.24}}{{CAS|9036-37-7}}dimer, hexamer, octamer{{cite journal |vauthors=Jaffe EK, Lawrence SH | title = Allostery and the dynamic oligomerization of porphobilinogen synthase | journal = Arch. Biochem. Biophys. | volume = 519 | issue = 2 | pages = 144–53 |date=March 2012 | pmid = 22037356 | pmc = 3291741 | doi = 10.1016/j.abb.2011.10.010 }}{{cite journal |vauthors=Breinig S, Kervinen J, Stith L, Wasson AS, Fairman R, Wlodawer A, Zdanov A, Jaffe EK | title = Control of tetrapyrrole biosynthesis by alternate quaternary forms of porphobilinogen synthase | journal = Nat. Struct. Biol. | volume = 10 | issue = 9 | pages = 757–63 |date=September 2003 | pmid = 12897770 | doi = 10.1038/nsb963 | s2cid = 24188785 }}PBGS is the prototype morpheein.
Pyruvate kinaseHomo sapiens{{EC number|2.7.1.40}}{{CAS|9001-59-6}}active and inactive dimers, active tetramer, monomer, trimer, pentamer{{cite journal |doi=10.1016/0014-5793(75)90064-2 |title=Alanine-mediated reversible inactivation of tumour pyruvate kinase caused by a tetramer-dimer transition |year=1975 |last1=Schulz |first1=Ju¨Rgen |last2=Sparmann |first2=Gisela |last3=Hofmann |first3=Eberhard |journal=FEBS Letters |volume=50 |issue=3 |pages=346–50 |pmid=1116605|s2cid=5665440 |doi-access=free |bibcode=1975FEBSL..50..346S }}{{cite journal |pmid=5545066 |year=1971 |last1=Ibsen |first1=KH |last2=Schiller |first2=KW |last3=Haas |first3=TA |title=Interconvertible kinetic and physical forms of human erythrocyte pyruvate kinase |volume=246 |issue=5 |pages=1233–40 |journal=The Journal of Biological Chemistry|doi=10.1016/S0021-9258(19)76963-4 |doi-access=free }}Conformationally distinct oligomeric forms
Ribonuclease ABos taurus{{EnzExplorer| 3.1.27.5}}{{CAS|9901-99-4}}monomer, dimer, trimer, tetramer, hexamer, pentamer, higher order{{cite journal |doi=10.1110/ps.36602 |title=Structures of the two 3D domain-swapped RNase a trimers |year=2009 |last1=Liu |first1=Yanshun |last2=Gotte |first2=Giovanni |last3=Libonati |first3=Massimo |last4=Eisenberg |first4=David |journal=Protein Science |volume=11 |issue=2 |pages=371–80 |pmid=11790847 |pmc=2373430}}{{cite journal |doi=10.1046/j.1432-1327.1999.00761.x |title=Structural versatility of bovine ribonuclease A. Distinct conformers of trimeric and tetrameric aggregates of the enzyme |year=1999 |last1=Gotte |first1=Giovanni |last2=Bertoldi |first2=Mariarita |last3=Libonati |first3=Massimo |journal=European Journal of Biochemistry |volume=265 |issue=2 |pages=680–7 |pmid=10504400|doi-access=free }}{{cite journal |doi=10.1016/j.bbapap.2005.10.011 |title=Three-dimensional domain-swapped oligomers of ribonuclease A: Identification of a fifth tetramer, pentamers and hexamers, and detection of trace heptameric, octameric and nonameric species |year=2006 |last1=Gotte |first1=Giovanni |last2=Laurents |first2=Douglas V. |last3=Libonati |first3=Massimo |journal=Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics |volume=1764 |pmid=16310422 |pages=44–54 |issue=1}}{{cite journal |doi=10.1016/S0167-4838(98)00087-9 |pmid=9675255 |title=Two different forms of aggregated dimers of ribonuclease A |year=1998 |last1=Gotte |first1=Giovanni |last2=Libonati |first2=Massimo |journal=Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology |volume=1386 |issue=1 |pages=106–112}}{{cite journal |doi=10.1042/BJ20031922 |title=Oligomerization of bovine ribonuclease A: Structural and functional features of its multimers |year=2004 |last1=Libonati |first1=Massimo |last2=Gotte |first2=Giovanni |journal=Biochemical Journal |volume=380 |issue=2 |pages=311–27 |pmid=15104538 |pmc=1224197}}Multiple/protein moonlighting functions,{{cite journal |doi=10.1007/s00018-004-4302-x |title=Biological actions of the oligomers of ribonuclease A |year=2004 |last1=Libonati |first1=M. |journal=Cellular and Molecular Life Sciences |volume=61 |issue=19–20 |pages=2431–6 |pmid=15526151|s2cid=8769502 |pmc=11924434 }}{{cite journal |pmid=8761484 |year=1996 |last1=Libonati |first1=M |last2=Bertoldi |first2=M |last3=Sorrentino |first3=S |title=The activity on double-stranded RNA of aggregates of ribonuclease a higher than dimers increases as a function of the size of the aggregates |volume=318 |issue=1 |pages=287–90 |pmc=1217620 |journal=The Biochemical Journal |doi=10.1042/bj3180287}}{{cite journal |doi=10.2174/138920108784567308 |title=A Novel Biological Actions Acquired by Ribonuclease Through Oligomerization |year=2008 |last1=Libonati |first1=M. |last2=Gotte |first2=G. |last3=Vottariello |first3=F. |journal=Current Pharmaceutical Biotechnology |volume=9 |issue=3 |pages=200–9 |pmid=18673285}} Different assemblies have different activities, Conformationally distinct oligomeric forms
Ribonucleotide reductaseMus musculus{{EnzExplorer|1.17.4.1}}{{CAS|9047-64-7}}tetramer, hexamer{{cite journal |doi=10.1021/bi020634d |title=Comprehensive Model for Allosteric Regulation of Mammalian Ribonucleotide Reductase: Refinements and Consequences† |year=2003 |last1=Kashlan |first1=Ossama B. |last2=Cooperman |first2=Barry S. |journal=Biochemistry |volume=42 |issue=6 |pages=1696–706 |pmid=12578384}}{{cite journal |doi=10.1021/bi011653a |title=A Comprehensive Model for the Allosteric Regulation of Mammalian Ribonucleotide Reductase. Functional Consequences of ATP- and dATP-Induced Oligomerization of the Large Subunit† |year=2002 |last1=Kashlan |first1=Ossama B. |last2=Scott |first2=Charles P. |last3=Lear |first3=James D. |last4=Cooperman |first4=Barry S. |journal=Biochemistry |volume=41 |issue=2 |pages=462–74 |pmid=11781084}}{{cite journal |doi=10.1016/S0969-2126(97)00259-1 |title=Binding of allosteric effectors to ribonucleotide reductase protein R1: Reduction of active-site cysteines promotes substrate binding |year=1997 |last1=Eriksson |first1=Mathias |last2=Uhlin |first2=Ulla |last3=Ramaswamy |first3=S |last4=Ekberg |first4=Monica |last5=Regnström |first5=Karin |last6=Sjöberg |first6=Britt-Marie |last7=Eklund |first7=Hans |journal=Structure |volume=5 |issue=8 |pages=1077–92 |pmid=9309223|doi-access=free }}{{cite journal |doi=10.1038/nsmb.2007 |pmc=3101628 |title=Structural basis for allosteric regulation of human ribonucleotide reductase by nucleotide-induced oligomerization |year=2011 |last1=Fairman |first1=James Wesley |last2=Wijerathna |first2=Sanath Ranjan |last3=Ahmad |first3=Md Faiz |last4=Xu |first4=Hai |last5=Nakano |first5=Ryo |last6=Jha |first6=Shalini |last7=Prendergast |first7=Jay |last8=Welin |first8=R Martin |last9=Flodin |first9=Susanne | display-authors=8 |journal=Nature Structural & Molecular Biology |volume=18 |issue=3 |pages=316–22 |pmid=21336276}}Effector molecules impact multimerization
S-adenosyl-L-homocysteine hydrolaseDictyostelium discoideum{{EnzExplorer|3.3.1.1}}{{CAS|9025-54-1}}tetramer and other{{cite journal |doi=10.1016/0003-9861(84)90507-1 |title=Purification of S-adenosyl-l-homocysteine hydrolase from Dictyostelium discoideum: Reversible inactivation by cAMP and 2′-deoxyadenosine |year=1984 |last1=Hohman |first1=R.J. |last2=Guitton |first2=M.C. |last3=Véron |first3=M. |journal=Archives of Biochemistry and Biophysics |volume=233 |issue=2 |pages=785–95 |pmid=6091559}}{{cite journal |doi=10.1111/j.1432-1033.1977.tb11907.x |title=Adenosylhomocysteinase from Yellow Lupin Seeds. Purification and Properties |year=1977 |last1=Guranowski |first1=Andrzej |last2=Pawelkiewicz |first2=Jerzy |journal=European Journal of Biochemistry |volume=80 |issue=2 |pages=517–23 |pmid=923592|doi-access=free }}{{cite journal |pmid=7305945 |year=1981 |last1=Kajander |first1=EO |last2=Raina |first2=AM |title=Affinity-chromatographic purification of S-adenosyl-L-homocysteine hydrolase. Some properties of the enzyme from rat liver |volume=193 |issue=2 |pages=503–12 |pmc=1162632 |journal=The Biochemical Journal |doi=10.1042/bj1930503}}Effector molecules impact multimerization
Biodegrative threonine dehydratase / threonine ammonia-lyaseEscherichia coli{{EnzExplorer| 4.3.1.19}}{{CAS|774231-81-1}}2 monomers, 2 tetramers{{cite journal |pmid=321452 |year=1977 |last1=Saeki |first1=Y |last2=Ito |first2=S |last3=Shizuta |first3=Y |last4=Hayaishi |first4=O |last5=Kagamiyama |first5=H |last6=Wada |first6=H |title=Subunit structure of biodegradative threonine deaminase |volume=252 |issue=7 |pages=2206–8 |journal=The Journal of Biological Chemistry|doi=10.1016/S0021-9258(17)40542-4 |doi-access=free }}{{cite journal |doi=10.1016/0006-291X(64)90499-1 |title=Basis for AMP activation of "Biodegradative" threonine dehydrase from |year=1964 |last1=Phillips |first1=A.T. |last2=Wood |first2=W.A. |journal=Biochemical and Biophysical Research Communications |volume=15 |issue=6 |pages=530–535}}{{cite journal |pmid=4584826 |year=1973 |last1=Gerlt |first1=JA |last2=Rabinowitz |first2=KW |last3=Dunne |first3=CP |last4=Wood |first4=WA |title=The mechanism of action of 5'-adenylic acid-activated threonine dehydrase. V. Relation between ligand-induced allosteric activation and the protomeroligomer interconversion |volume=248 |issue=23 |pages=8200–6 |journal=The Journal of Biological Chemistry|doi=10.1016/S0021-9258(19)43214-6 |doi-access=free }}Effector molecules impact multimerization, Characterized equilibrium of oligomers, Different assemblies have different activities
β-TryptaseHomo sapiens{{EnzExplorer|3.4.21.59}}{{CAS|97501-93-4}}active and inactive monomers, active and inactive tetramers{{cite journal |doi=10.1021/bi960042t |title=Inactivation of Human Lung Tryptase: Evidence for a Re-Activatable Tetrameric Intermediate and Active Monomers |year=1996 |last1=Addington |first1=Adele K. |last2=Johnson |first2=David A. |journal=Biochemistry |volume=35 |issue=42 |pages=13511–8 |pmid=8885830}}{{cite journal |doi=10.1042/BJ20021418 |pmc=1223112 |title=Formation of active monomers from tetrameric human β-tryptase |year=2003 |last1=Fajardo |first1=Ignacio |last2=Pejler |first2=Gunnar |journal=Biochemical Journal |volume=369 |issue=3 |pages=603–10 |pmid=12387726}}{{cite journal |doi=10.1021/bi049486c |title=Human β-Tryptase: Detection and Characterization of the Active Monomer and Prevention of Tetramer Reconstitution by Protease Inhibitors |year=2004 |last1=Fukuoka |first1=Yoshihiro |last2=Schwartz |first2=Lawrence B. |journal=Biochemistry |volume=43 |issue=33 |pages=10757–64 |pmid=15311937}}{{cite journal |pmid=16493076 |year=2006 |last1=Fukuoka |first1=Y |last2=Schwartz |first2=LB |title=The B12 anti-tryptase monoclonal antibody disrupts the tetrameric structure of heparin-stabilized beta-tryptase to form monomers that are inactive at neutral pH and active at acidic pH |volume=176 |issue=5 |pages=3165–72 |pmc=1810230 |journal=Journal of Immunology |doi=10.4049/jimmunol.176.5.3165}}{{cite journal |doi=10.1016/j.intimp.2007.07.007 |pmc=2278033 |title=Active monomers of human β-tryptase have expanded substrate specificities |year=2007 |last1=Fukuoka |first1=Yoshihiro |last2=Schwartz |first2=Lawrence B. |journal=International Immunopharmacology |volume=7 |issue=14 |pages=1900–8 |pmid=18039527}}{{cite journal |doi=10.1074/jbc.M105531200 |title=Structural Requirements and Mechanism for Heparin-induced Activation of a Recombinant Mouse Mast Cell Tryptase, Mouse Mast Cell Protease-6. FORMATION OF ACTIVE TRYPTASE MONOMERS IN THE PRESENCE OF LOW MOLECULAR WEIGHT HEPARIN |year=2001 |last1=Hallgren |first1=J. |journal=Journal of Biological Chemistry |volume=276 |issue=46 |pages=42774–81 |pmid=11533057 |last2=Spillmann |first2=D |last3=Pejler |first3=G|doi-access=free }}{{cite journal |doi=10.1021/bi7004625 |title=Characterization of Three Distinct Catalytic Forms of Human Tryptase-β: Their Interrelationships and Relevance |year=2007 |last1=Schechter |first1=Norman M. |last2=Choi |first2=Eun-Jung |last3=Selwood |first3=Trevor |last4=McCaslin |first4=Darrell R. |journal=Biochemistry |volume=46 |issue=33 |pages=9615–29 |pmid=17655281}}{{cite journal |doi=10.1021/bi00033a038 |title=Structural Changes Associated with the Spontaneous Inactivation of the Serine Proteinase Human Tryptase |year=1995 |last1=Schechter |first1=Norman M. |last2=Eng |first2=Grace Y. |last3=Selwood |first3=Trevor |last4=McCaslin |first4=Darrell R. |journal=Biochemistry |volume=34 |issue=33 |pages=10628–38 |pmid=7654717}}{{cite book |doi=10.1016/0076-6879(94)44008-5 |chapter=[6] Tryptase: A mast cell serine protease |title=Proteolytic Enzymes: Serine and Cysteine Peptidases |series=Methods in Enzymology |year=1994 |last1=Schwartz |first1=Lawrence B. |isbn=978-0-12-182145-6 |volume=244 |pmid=7845247 |pages=[https://archive.org/details/proteolyticenzym0000unse/page/88 88–100] |url=https://archive.org/details/proteolyticenzym0000unse/page/88 }}{{cite journal |doi=10.1182/blood-2003-08-2981 |title=Intracellular serpin SERPINB6 (PI6) is abundantly expressed by human mast cells and forms complexes with β-tryptase monomers |year=2004 |journal=Blood |volume=103 |issue=7 |pages=2710–7 |pmid=14670919 |first1=Merel C. M. |last1=Strik |first2=Angela |last2=Wolbink |first3=Dorine |last3=Wouters |first4=Bellinda A. |last4=Bladergroen |first5=Angelique R. |last5=Verlaan |first6=Inge S. |last6=van Houdt |first7=Sanne |last7=Hijlkema |first8=C. Erik |last8=Hack |first9=J. Alain |last9=Kummer| display-authors=8 |doi-access= }}Protein concentration dependent specific activity,{{cite journal |doi=10.1016/S0167-4838(98)00053-3 |title=Spontaneous inactivation of human lung tryptase as probed by size-exclusion chromatography and chemical cross-linking: Dissociation of active tetrameric enzyme into inactive monomers is the primary event of the entire process |year=1998 |last1=Kozik |first1=Andrzej |last2=Potempa |first2=Jan |last3=Travis |first3=James |journal=Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology |volume=1385 |pmid=9630576 |pages=139–48 |issue=1}} Characterized equilibrium of oligomers
Tumor necrosis factor-αHomo sapiens{{CAS|94948-61-5}}monomer, dimer, trimer{{cite journal |doi=10.1021/bi00019a012 |title=Mechanism of suramin-induced deoligomerization of tumor necrosis factor .alpha |year=1995 |last1=Alzani |first1=R. |last2=Cozzi |first2=E. |last3=Corti |first3=A. |last4=Temponi |first4=M. |last5=Trizio |first5=D. |last6=Gigli |first6=M. |last7=Rizzo |first7=V. |journal=Biochemistry |volume=34 |issue=19 |pages=6344–50 |pmid=7756262}}{{cite journal |pmid=1622406 |year=1992 |last1=Corti |first1=A |last2=Fassina |first2=G |last3=Marcucci |first3=F |last4=Barbanti |first4=E |last5=Cassani |first5=G |title=Oligomeric tumour necrosis factor alpha slowly converts into inactive forms at bioactive levels |volume=284 |issue=3 |pages=905–10 |pmc=1132625 |journal=The Biochemical Journal |doi=10.1042/bj2840905}}Different assemblies have different activities{{cite journal |doi=10.1111/j.1432-1033.1995.0381e.x |title=The Folding and Assembly Pathway of Tumour Necrosis Factor TNFalpha, a Globular Trimeric Protein |year=1995 |last1=Hlodan |first1=Roman |last2=Pain |first2=Roger H. |journal=European Journal of Biochemistry |volume=231 |issue=2 |pages=381–7 |pmid=7635149 |doi-access=free }}
Uracil phosphoribosyltransferaseEscherichia coli{{EnzExplorer|2.4.2.9}}{{CAS|9030-24-4}}trimer, pentamer{{cite journal |doi=10.1111/j.1432-1033.1996.0637h.x |title=Different Oligomeric States are Involved in the Allosteric Behavior of Uracil Phosphoribosyltransferase from Escherichia Coli |year=1996 |last1=Jensen |first1=Kaj Frank |last2=Mygind |first2=Bente |journal=European Journal of Biochemistry |volume=240 |issue=3 |pages=637–45 |pmid=8856065}}Effector molecules impact multimerization, Substrate binding/turnover impacts multimerization, Different assemblies have different activities

References