motivic L-function

In mathematics, motivic L-functions are a generalization of Hasse–Weil L-functions to general motives over global fields. The local L-factor at a finite place v is similarly given by the characteristic polynomial of a Frobenius element at v acting on the v-inertial invariants of the v-adic realization of the motive. For infinite places, Jean-Pierre Serre gave a recipe in {{harv|Serre|1970}} for the so-called Gamma factors in terms of the Hodge realization of the motive. It is conjectured that, like other L-functions, that each motivic L-function can be analytically continued to a meromorphic function on the entire complex plane and satisfies a functional equation relating the L-function L(sM) of a motive M to {{nowrap|L(1 − s, M)}}, where M is the dual of the motive M.Another common normalization of the L-functions consists in shifting the one used here so that the functional equation relates a value at s with one at {{nowrap|w + 1 − s}}, where w is the weight of the motive.

Examples

Basic examples include Artin L-functions and Hasse–Weil L-functions. It is also known {{harv|Scholl|1990}}, for example, that a motive can be attached to a newform (i.e. a primitive cusp form), hence their L-functions are motivic.

Conjectures

Several conjectures exist concerning motivic L-functions. It is believed that motivic L-functions should all arise as automorphic L-functions,{{harvnb|Langlands|1980}} and hence should be part of the Selberg class. There are also conjectures concerning the values of these L-functions at integers generalizing those known for the Riemann zeta function, such as Deligne's conjecture on special values of L-functions, the Beilinson conjecture, and the Bloch–Kato conjecture (on special values of L-functions).

Notes

{{reflist}}

References

  • {{Citation

| last=Deligne

| first=Pierre

| author-link=Pierre Deligne

| contribution=Valeurs de fonctions L et périodes d'intégrales

| contribution-url=https://www.ams.org/online_bks/pspum332/pspum332-ptIV-8.pdf

| title=Automorphic Forms, Representations, and L-Functions

| editor-last=Borel

| editor-first=Armand

| editor-link=Armand Borel

| editor2-last=Casselman

| editor2-first=William

| publisher=AMS

| location=Providence, RI

| series=Proceedings of the Symposium in Pure Mathematics

| isbn=0-8218-1437-0

| mr=0546622 | zbl=0449.10022

| year=1979

| volume=33

| issue=2

| pages=313–346

| language=French}}

  • {{Citation

| last=Langlands

| first=Robert P.

| author-link=Robert Langlands

| contribution=L-functions and automorphic representations

| year=1980

| title=Proceedings of the International Congress of Mathematicians (Helsinki, 1978)

| volume=1

| publisher=Academia Scientiarum Fennica

| mr=0562605

| pages=165–175

| location=Helsinki

| url=http://mathunion.org/ICM/ICM1978.1/Main/icm1978.1.0165.0176.ocr.pdf

| access-date=2011-05-11

| archive-url=https://web.archive.org/web/20160303210111/http://mathunion.org/ICM/ICM1978.1/Main/icm1978.1.0165.0176.ocr.pdf

| archive-date=2016-03-03

| url-status=dead

}} [http://sunsite.ubc.ca/DigitalMathArchive/Langlands/pdf/lfunct-ps.pdf alternate URL]

  • {{Citation

| last=Scholl

| first=Anthony

| title=Motives for modular forms

| year=1990

| journal=Inventiones Mathematicae

| pages=419–430

| volume=100

| number=2

| mr=1047142

| doi=10.1007/BF01231194

| bibcode=1990InMat.100..419S

| s2cid=17109327

}}

  • {{Citation

| last=Serre

| first=Jean-Pierre

| author-link=Jean-Pierre Serre

| title=Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures)

| journal=Séminaire Delange-Pisot-Poitou

| year=1970

| volume=11

| number=2 (1969–1970) exp. 19

| pages=1–15

| url=http://www.numdam.org/item?id=SDPP_1969-1970__11_2_A4_0

}}

{{L-functions-footer}}

Category:Zeta and L-functions

Category:Algebraic geometry