multi-objective linear programming

Multi-objective linear programming is a subarea of mathematical optimization. A multiple objective linear program (MOLP) is a linear program with more than one objective function. An MOLP is a special case of a vector linear program. Multi-objective linear programming is also a subarea of Multi-objective optimization.

Problem formulation

In mathematical terms, a MOLP can be written as:

:\min_x Px \quad\text{s.t.}\quad a \leq Bx \leq b,\; \ell \leq x \leq u

where B is an (m\times n) matrix, P is a (q\times n) matrix, a is an m-dimensional vector with components in \mathbb{R} \cup \{-\infty\}, b is an m-dimensional vector with components in \mathbb{R} \cup \{+\infty\}, \ell is an n-dimensional vector with components in \mathbb{R} \cup \{-\infty\}, u is an n-dimensional vector with components in \mathbb{R} \cup \{+\infty\}

Solution concepts

A feasible point x is called efficient if there is no feasible point y with Px \leq Py, Px \neq Py, where \leq denotes the component-wise ordering.

Often in the literature, the aim in multiple objective linear programming is to compute the set of all efficient extremal points.....{{cite journal|last1=Ecker|first1=J. G.|last2=Kouada|first2=I. A.|title=Finding all efficient extreme points for multiple objective linear programs|journal=Mathematical Programming|volume=14|issue=1|year=1978|pages=249–261|issn=0025-5610|doi=10.1007/BF01588968|s2cid=42726689}} There are also algorithms to determine the set of all maximal efficient faces.{{cite journal|last1=Ecker|first1=J. G.|last2=Hegner|first2=N. S.|last3=Kouada|first3=I. A.|title=Generating all maximal efficient faces for multiple objective linear programs|journal=Journal of Optimization Theory and Applications|volume=30|issue=3|year=1980|pages=353–381|issn=0022-3239|doi=10.1007/BF00935493|s2cid=120455645}} Based on these goals, the set of all efficient (extreme) points can be seen to be the solution of MOLP. This type of solution concept is called decision set based.{{cite journal|title=An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem|last1=Benson|first1=Harold P.|journal=Journal of Global Optimization|volume=13|issue=1|year=1998|pages=1–24|issn=0925-5001|doi=10.1023/A:1008215702611|s2cid=45440728}} It is not compatible with an optimal solution of a linear program but rather parallels the set of all optimal solutions of a linear program (which is more difficult to determine).

Efficient points are frequently called efficient solutions. This term is misleading because a single efficient point can be already obtained by solving one linear program, such as the linear program with the same feasible set and the objective function being the sum of the objectives of MOLP.{{cite book|last1=Ehrgott|first1=M.|title=Multicriteria Optimization|publisher=Springer|year=2005|doi=10.1007/3-540-27659-9|isbn=978-3-540-21398-7|citeseerx=10.1.1.360.5223}}

More recent references consider outcome set based solution concepts{{cite journal|last1=Heyde|first1=Frank|last2=Löhne|first2=Andreas|title=Solution concepts in vector optimization: a fresh look at an old story|journal=Optimization|volume=60|issue=12|year=2011|pages=1421–1440|issn=0233-1934|doi=10.1080/02331931003665108|s2cid=54519405|url=http://webdoc.sub.gwdg.de/ebook/serien/e/reports_Halle-Wittenberg_math/08-19report.pdf}} and corresponding algorithms.{{cite journal|last1=Dauer|first1=J.P.|last2=Saleh|first2=O.A.|title=Constructing the set of efficient objective values in multiple objective linear programs|journal=European Journal of Operational Research|volume=46|issue=3|year=1990|pages=358–365|issn=0377-2217|doi=10.1016/0377-2217(90)90011-Y}} Assume MOLP is bounded, i.e. there is some y \in \mathbb{R}^q such that y \leq Px for all feasible x. A solution of MOLP is defined to be a finite subset \bar S of efficient points that carries a sufficient amount of information in order to describe the upper image of MOLP. Denoting by S the feasible set of MOLP, the upper image of MOLP is the set \mathcal{P}:=P[ S] + \mathbb{R}^q_+ := \{ y \in \mathbb{R}^q:\; \exists x \in S: y \geq Px \}. A formal definition of a solution {{cite book|title=Vector Optimization with Infimum and Supremum|last1=Löhne|first1=Andreas|year=2011|issn=1867-8971|doi=10.1007/978-3-642-18351-5|series=Vector Optimization|isbn=978-3-642-18350-8}} is as follows:

A finite set \bar S of efficient points is called solution to MOLP if

\operatorname{conv} P[\bar S] + \mathbb{R}^q_+ = \mathcal{P} ("conv" denotes the convex hull).

If MOLP is not bounded, a solution consists not only of points but of points and directions

Solution methods

Multiobjective variants of the simplex algorithm are used to compute decision set based solutions{{cite journal|last1=Armand|first1=P.|last2=Malivert|first2=C.|title=Determination of the efficient set in multiobjective linear programming|journal=Journal of Optimization Theory and Applications|volume=70|issue=3|year=1991|pages=467–489|issn=0022-3239|doi=10.1007/BF00941298|citeseerx=10.1.1.161.9730|s2cid=18407847}} and objective set based solutions.{{cite journal|last1=Rudloff|first1=Birgit|last2=Ulus|first2=Firdevs|last3=Vanderbei|first3=Robert|title=A parametric simplex algorithm for linear vector optimization problems|journal=Mathematical Programming|volume=163|issue=1–2|year=2016|pages=213–242|issn=0025-5610|doi=10.1007/s10107-016-1061-z|arxiv=1507.01895|s2cid=13844342}}

Objective set based solutions can be obtained by Benson's algorithm.{{cite journal|last1=Löhne|first1=Andreas|last2=Weißing|first2=Benjamin|title=The vector linear program solver Bensolve – notes on theoretical background|journal=European Journal of Operational Research|volume=260|issue=3|year=2017|pages=807–813|issn=0377-2217|doi=10.1016/j.ejor.2016.02.039|arxiv=1510.04823|s2cid=17267946}}

Related problem classes

Multiobjective linear programming is equivalent to polyhedral projection.{{cite journal|last1=Löhne|first1=Andreas|last2=Weißing|first2=Benjamin|title=Equivalence between polyhedral projection, multiple objective linear programming and vector linear programming|journal=Mathematical Methods of Operations Research|volume=84|issue=2|year=2016|pages=411–426|issn=1432-2994|doi=10.1007/s00186-016-0554-0|arxiv=1507.00228|s2cid=26137201}}

References