multifractal system

{{Short description|System with multiple fractal dimensions}}

{{Use American English|date = January 2019}}

File:Karperien Strange Attractor 200.gif that exhibits multifractal scaling]]

File:WF111-Anderson transition-multifractal.jpeg transition in a system with 1367631 atoms.]]

A multifractal system is a generalization of a fractal system in which a single exponent (the fractal dimension) is not enough to describe its dynamics; instead, a continuous spectrum of exponents (the so-called singularity spectrum) is needed.{{cite book | last = Harte | first = David | title = Multifractals | publisher = Chapman & Hall | location = London | year = 2001 | isbn = 978-1-58488-154-4 }}

Multifractal systems are common in nature. They include the length of coastlines, mountain topography,{{Cite journal|last1=Gerges|first1=Firas|last2=Geng|first2=Xiaolong|last3=Nassif|first3=Hani|last4=Boufadel|first4=Michel C.|date=2021|title=Anisotropic Multifractal Scaling of Mount Lebanon Topography: Approximate Conditioning|url=https://www.worldscientific.com/doi/abs/10.1142/S0218348X21501127|journal=Fractals|language=en|volume=29|issue=5|pages=2150112–2153322|doi=10.1142/S0218348X21501127|bibcode=2021Fract..2950112G |s2cid=234272453 |issn=0218-348X|url-access=subscription}} fully developed turbulence, real-world scenes, heartbeat dynamics,{{Cite journal|last1=Ivanov|first1=Plamen Ch.|last2=Amaral|first2=Luís A. Nunes|last3=Goldberger|first3=Ary L.|last4=Havlin|first4=Shlomo|last5=Rosenblum|first5=Michael G.|last6=Struzik|first6=Zbigniew R.|last7=Stanley|first7=H. Eugene|date=1999-06-03|title=Multifractality in human heartbeat dynamics|journal=Nature|language=En|volume=399|issue=6735|pages=461–465|doi=10.1038/20924|pmid=10365957|issn=0028-0836|arxiv=cond-mat/9905329|bibcode=1999Natur.399..461I |s2cid=956569}} human gait{{Cite journal |last1=Scafetta |first1=Nicola |last2=Marchi |first2=Damiano |last3=West |first3=Bruce J. |date=June 2009 |title=Understanding the complexity of human gait dynamics |url=https://pubs.aip.org/aip/cha/article/909701 |journal=Chaos: An Interdisciplinary Journal of Nonlinear Science |language=en |volume=19 |issue=2 |pages=026108 |doi=10.1063/1.3143035 |pmid=19566268 |bibcode=2009Chaos..19b6108S |issn=1054-1500|url-access=subscription }} and activity,{{Cite journal|last1=França|first1=Lucas Gabriel Souza|last2=Montoya|first2=Pedro|last3=Miranda|first3=José Garcia Vivas|date=2019|title=On multifractals: A non-linear study of actigraphy data|journal=Physica A: Statistical Mechanics and Its Applications|volume=514|pages=612–619|doi=10.1016/j.physa.2018.09.122|issn=0378-4371|arxiv=1702.03912|bibcode=2019PhyA..514..612F |s2cid=18259316}} human brain activity,{{Cite journal|last1=Papo|first1=David|last2=Goñi|first2=Joaquin|last3=Buldú|first3=Javier M.|date=2017|title=Editorial: On the relation of dynamics and structure in brain networks|journal=Chaos: An Interdisciplinary Journal of Nonlinear Science|language=en|volume=27|issue=4|pages=047201|doi=10.1063/1.4981391|pmid=28456177|issn=1054-1500|bibcode=2017Chaos..27d7201P}}{{Cite journal|last1=Ciuciu|first1=Philippe|last2=Varoquaux|first2=Gaël|last3=Abry|first3=Patrice|last4=Sadaghiani|first4=Sepideh|last5=Kleinschmidt|first5=Andreas|date=2012|title=Scale-free and multifractal properties of fMRI signals during rest and task|journal=Frontiers in Physiology|language=en|volume=3|pages=186|doi=10.3389/fphys.2012.00186|issn=1664-042X|pmc=3375626|pmid=22715328|doi-access=free}}{{Cite journal|last1=França|first1=Lucas G. Souza|last2=Miranda|first2=José G. Vivas|last3=Leite|first3=Marco|last4=Sharma|first4=Niraj K.|last5=Walker|first5=Matthew C.|last6=Lemieux|first6=Louis|last7=Wang|first7=Yujiang|date=2018|title=Fractal and Multifractal Properties of Electrographic Recordings of Human Brain Activity: Toward Its Use as a Signal Feature for Machine Learning in Clinical Applications|journal=Frontiers in Physiology|language=en|volume=9|pages=1767|doi=10.3389/fphys.2018.01767|pmid=30618789|pmc=6295567|issn=1664-042X|bibcode=2018arXiv180603889F|arxiv=1806.03889|doi-access=free}}{{Cite journal|last1=Ihlen|first1=Espen A. F.|last2=Vereijken|first2=Beatrix|date=2010|title=Interaction-dominant dynamics in human cognition: Beyond 1/ƒα fluctuation.|journal=Journal of Experimental Psychology: General|language=en|volume=139|issue=3|pages=436–463|doi=10.1037/a0019098|pmid=20677894|issn=1939-2222}}{{Cite journal|last1=Zhang|first1=Yanli|last2=Zhou|first2=Weidong|last3=Yuan|first3=Shasha|date=2015|title=Multifractal Analysis and Relevance Vector Machine-Based Automatic Seizure Detection in Intracranial EEG|journal=International Journal of Neural Systems|language=en|volume=25|issue=6|pages=1550020|doi=10.1142/s0129065715500203|pmid=25986754|issn=0129-0657}}{{Cite journal|last1=Suckling|first1=John|last2=Wink|first2=Alle Meije|last3=Bernard|first3=Frederic A.|last4=Barnes|first4=Anna|last5=Bullmore|first5=Edward|date=2008|title=Endogenous multifractal brain dynamics are modulated by age, cholinergic blockade and cognitive performance|journal=Journal of Neuroscience Methods|volume=174|issue=2|pages=292–300|doi=10.1016/j.jneumeth.2008.06.037|issn=0165-0270|pmc=2590659|pmid=18703089}}{{Cite journal|last1=Zorick|first1=Todd|last2=Mandelkern|first2=Mark A.|date=2013-07-03|title=Multifractal Detrended Fluctuation Analysis of Human EEG: Preliminary Investigation and Comparison with the Wavelet Transform Modulus Maxima Technique|journal=PLOS ONE|language=en|volume=8|issue=7|pages=e68360|doi=10.1371/journal.pone.0068360|issn=1932-6203|pmc=3700954|pmid=23844189|bibcode=2013PLoSO...868360Z|doi-access=free}} and natural luminosity time series.{{Cite journal|last1=Gaston|first1=Kevin J.|last2=Richard Inger|last3=Bennie|first3=Jonathan|last4=Davies|first4=Thomas W.|date=2013-04-24|title=Artificial light alters natural regimes of night-time sky brightness|journal=Scientific Reports|language=en|volume=3|pages=1722|doi=10.1038/srep01722|issn=2045-2322|bibcode=2013NatSR...3E1722D|pmc=3634108}} Models have been proposed in various contexts ranging from turbulence in fluid dynamics to internet traffic, finance, image modeling, texture synthesis, meteorology, geophysics and more.{{Citation needed|date=November 2018}} The origin of multifractality in sequential (time series) data has been attributed to mathematical convergence effects related to the central limit theorem that have as foci of convergence the family of statistical distributions known as the Tweedie exponential dispersion models,{{cite journal | last1 = Kendal | first1 = WS | last2 = Jørgensen | first2 = BR | year = 2011 | title = Tweedie convergence: a mathematical basis for Taylor's power law, 1/f noise and multifractality | url = https://portal.findresearcher.sdu.dk/da/publications/7f80e772-1f87-4ff3-8b07-8e38494cc650| journal = Phys. Rev. E | volume = 84 | issue = 6 Pt 2| page = 066120 | doi=10.1103/physreve.84.066120 | pmid=22304168| bibcode = 2011PhRvE..84f6120K }} as well as the geometric Tweedie models.{{cite journal | last1 = Jørgensen | first1 = B | last2 = Kokonendji | first2 = CC | year = 2011 | title = Dispersion models for geometric sums | journal = Braz J Probab Stat | volume = 25 | issue = 3| pages = 263–293 | doi=10.1214/10-bjps136| doi-access = free }} The first convergence effect yields monofractal sequences, and the second convergence effect is responsible for variation in the fractal dimension of the monofractal sequences.{{cite journal | last1 = Kendal | first1 = WS | year = 2014 | title = Multifractality attributed to dual central limit-like convergence effects | journal = Physica A | volume = 401 | pages = 22–33 | doi=10.1016/j.physa.2014.01.022| bibcode = 2014PhyA..401...22K}}

Multifractal analysis is used to investigate datasets, often in conjunction with other methods of fractal and lacunarity analysis. The technique entails distorting datasets extracted from patterns to generate multifractal spectra that illustrate how scaling varies over the dataset. Multifractal analysis has been used to decipher the generating rules and functionalities of complex networks.{{cite journal |last1=Xiao |first1=Xiongye |last2=Chen |first2=Hanlong |last3=Bogdan |first3=Paul |title=Deciphering the generating rules and functionalities of complex networks |journal=Scientific Reports |date=25 November 2021 |volume=11 |issue=1 |pages=22964 |doi=10.1038/s41598-021-02203-4|pmid=34824290 |pmc=8616909 |bibcode=2021NatSR..1122964X |s2cid=244660272 }} Multifractal analysis techniques have been applied in a variety of practical situations, such as predicting earthquakes and interpreting medical images.{{Cite journal

| last1 = Lopes | first1 = R.

| last2 = Betrouni | first2 = N.

| doi = 10.1016/j.media.2009.05.003

| title = Fractal and multifractal analysis: A review

| journal = Medical Image Analysis

| volume = 13

| issue = 4

| pages = 634–649

| year = 2009

| pmid = 19535282

}}{{Cite journal | last1 = Moreno | first1 = P. A. | last2 = Vélez | first2 = P. E. | last3 = Martínez | first3 = E. | last4 = Garreta | first4 = L. E. | last5 = Díaz | first5 = N. S. | last6 = Amador | first6 = S. | last7 = Tischer | first7 = I. | last8 = Gutiérrez | first8 = J. M. | last9 = Naik | first9 = A. K. | last10 = Tobar | first10 = F. N. | last11 = García | first11 = F. | title = The human genome: A multifractal analysis | doi = 10.1186/1471-2164-12-506 | journal = BMC Genomics | volume = 12 | pages = 506 | year = 2011 | pmid = 21999602| pmc =3277318 | doi-access = free }}{{Cite journal

| last1 = Atupelage | first1 = C.

| last2 = Nagahashi | first2 = H.

| last3 = Yamaguchi | first3 = M.

| last4 = Sakamoto | first4 = M.

| last5 = Hashiguchi | first5 = A.

| title = Multifractal feature descriptor for histopathology

| journal = Analytical Cellular Pathology

| volume = 35

| issue = 2

| pages = 123–126

| doi = 10.1155/2012/912956

| year = 2012

| pmid = 22101185

| pmc = 4605731

| doi-access = free

}}

Definition

In a multifractal system s, the behavior around any point is described by a local power law:

:s(\vec{x}+\vec{a})-s(\vec{x}) \sim a^{h(\vec{x})}.

The exponent h(\vec{x}) is called the singularity exponent, as it describes the local degree of singularity or regularity around the point \vec{x}.{{Cite book |last=Falconer |first=Kenneth J. |title=Fractal geometry: mathematical foundations and applications |date=2014 |publisher=Wiley |isbn=978-1-119-94239-9 |edition=3. ed., 1. publ |location=Chichester |chapter=17. Multifractal measures}}

The ensemble formed by all the points that share the same singularity exponent is called the singularity manifold of exponent h, and is a fractal set of fractal dimension D(h): the singularity spectrum. The curve D(h) versus h is called the singularity spectrum and fully describes the statistical distribution of the variable s.{{Citation needed|date=November 2018}}

In practice, the multifractal behaviour of a physical system X is not directly characterized by its singularity spectrum D(h). Rather, data analysis gives access to the multiscaling exponents \zeta(q),\ q\in{\mathbb R}. Indeed, multifractal signals generally obey a scale invariance property that yields power-law behaviours for multiresolution quantities, depending on their scale a. Depending on the object under study, these multiresolution quantities, denoted by T_X(a), can be local averages in boxes of size a, gradients over distance a, wavelet coefficients at scale a, etc. For multifractal objects, one usually observes a global power-law scaling of the form:{{Citation needed|date=November 2018}}

:\langle T_X(a)^q \rangle \sim a^{\zeta(q)}\

at least in some range of scales and for some range of orders q. When such behaviour is observed, one talks of scale invariance, self-similarity, or multiscaling.{{cite journal |author1-first=A.J. |author1-last=Roberts |author2-first= A.|author2-last =Cronin |title=Unbiased estimation of multi-fractal dimensions of finite data sets |journal=Physica A |volume=233 |issue=3 |year=1996 |pages=867–878 |doi=10.1016/S0378-4371(96)00165-3 |arxiv=chao-dyn/9601019 |bibcode=1996PhyA..233..867R |s2cid=14388392 }}

Estimation

{{anchor|techniques}}

Using so-called multifractal formalism, it can be shown that, under some well-suited assumptions, there exists a correspondence between the singularity spectrum D(h) and the multi-scaling exponents \zeta(q) through a Legendre transform. While the determination of D(h) calls for some exhaustive local analysis of the data, which would result in difficult and numerically unstable calculations, the estimation of the \zeta(q) relies on the use of statistical averages and linear regressions in log-log diagrams. Once the \zeta(q) are known, one can deduce an estimate of D(h), thanks to a simple Legendre transform.{{Citation needed|date=November 2018}}

Multifractal systems are often modeled by stochastic processes such as multiplicative cascades. The \zeta(q) are statistically interpreted, as they characterize the evolution of the distributions of the T_X(a) as a goes from larger to smaller scales. This evolution is often called statistical intermittency and betrays a departure from Gaussian models.{{Citation needed|date=November 2018}}

Modelling as a multiplicative cascade also leads to estimation of multifractal properties.{{sfn|Roberts|Cronin|1996}} This methods works reasonably well, even for relatively small datasets. A maximum likely fit of a multiplicative cascade to the dataset not only estimates the complete spectrum but also gives reasonable estimates of the errors.{{cite web |last=Roberts |first=A. J. |title=Multifractal estimation—maximum likelihood |url=http://www.maths.adelaide.edu.au/anthony.roberts/multifractal.php |date=7 August 2014 |website=University of Adelaide |access-date=4 June 2019}}

Estimating multifractal scaling from box counting

{{anchor|calculations}}

Multifractal spectra can be determined from box counting on digital images. First, a box counting scan is done to determine how the pixels are distributed; then, this "mass distribution" becomes the basis for a series of calculations.{{citation |author=Karperien, A |title=What are Multifractals? |publisher=ImageJ |access-date=2012-02-10 |url=http://rsbweb.nih.gov/ij/plugins/fraclac/FLHelp/Multifractals.htm |year=2002 |archive-url=https://web.archive.org/web/20111020190126/http://rsbweb.nih.gov/ij/plugins/fraclac/FLHelp/Multifractals.htm |archive-date=2011-10-20 |url-status=live }}{{Cite journal | last1 = Chhabra | first1 = A. | last2 = Jensen | first2 = R. | doi = 10.1103/PhysRevLett.62.1327 | title = Direct determination of the f(α) singularity spectrum | journal = Physical Review Letters | volume = 62 | issue = 12 | pages = 1327–1330 | year = 1989 | pmid = 10039645|bibcode = 1989PhRvL..62.1327C }}{{Cite journal | last1 = Posadas | first1 = A. N. D. | last2 = Giménez | first2 = D. | last3 = Bittelli | first3 = M. | last4 = Vaz | first4 = C. M. P. | last5 = Flury | first5 = M. | title = Multifractal Characterization of Soil Particle-Size Distributions | doi = 10.2136/sssaj2001.6551361x | journal = Soil Science Society of America Journal | volume = 65 | issue = 5 | pages = 1361 | year = 2001 | bibcode = 2001SSASJ..65.1361P }} The chief idea is that for multifractals, the probability P of a number of pixels m, appearing in a box i, varies as box size \epsilon, to some exponent \alpha, which changes over the image, as in {{EquationNote|Eq.0.0}} (NB: For monofractals, in contrast, the exponent does not change meaningfully over the set). P is calculated from the box-counting pixel distribution as in {{EquationNote|Eq.2.0}}.

{{NumBlk|:|P_{[i,\epsilon]} \varpropto \epsilon^{-\alpha_i} \therefore\alpha_i \varpropto \frac{\log{P_{[i,\epsilon]}}}{\log{\epsilon^{-1}}}|{{EquationRef|Eq.0.0}}}}

:\epsilon = an arbitrary scale (box size in box counting) at which the set is examined

:i = the index for each box laid over the set for an \epsilon

:m_{[i,\epsilon]} = the number of pixels or mass in any box, i, at size \epsilon

:N_\epsilon = the total boxes that contained more than 0 pixels, for each \epsilon

{{NumBlk|:|M_\epsilon = \sum_{i=1}^{N_\epsilon}m_{[i,\epsilon]} = the total mass or sum of pixels in all boxes for this \epsilon|{{EquationRef|Eq.1.0}}}}

{{NumBlk|:|P_{[i,\epsilon]} = \frac{m_{[i,\epsilon]}}{M_\epsilon} = the probability of this mass at i relative to the total mass for a box size|{{EquationRef|Eq.2.0}}}}

P is used to observe how the pixel distribution behaves when distorted in certain ways as in {{EquationNote|Eq.3.0}} and {{EquationNote|Eq.3.1}}:

:Q = an arbitrary range of values to use as exponents for distorting the data set

{{NumBlk|:|I_{{(Q)}_{[\epsilon]}} = \sum_{i=1}^{N_\epsilon} {P_{[i,\epsilon]}^Q} = the sum of all mass probabilities distorted by being raised to this Q, for this box size|{{EquationRef |Eq.3.0}}}}

:*When Q=1, {{EquationNote|Eq.3.0}} equals 1, the usual sum of all probabilities, and when Q=0, every term is equal to 1, so the sum is equal to the number of boxes counted, N_\epsilon.

{{NumBlk|:|\mu_{{(Q)}_{[i,\epsilon]}} = \frac{P_{[i,\epsilon]}^Q}{I_{{(Q)}_{[\epsilon]}}} = how the distorted mass probability at a box compares to the distorted sum over all boxes at this box size|{{EquationRef|Eq.3.1}}}}

These distorting equations are further used to address how the set behaves when scaled or resolved or cut up into a series of \epsilon-sized pieces and distorted by Q, to find different values for the dimension of the set, as in the following:

:*An important feature of {{EquationNote|Eq.3.0}} is that it can also be seen to vary according to scale raised to the exponent \tau in {{EquationNote|Eq.4.0}}:

{{NumBlk|:|I_{{(Q)}_{[\epsilon]}} \varpropto \epsilon^{\tau_{(Q)}}|{{EquationRef|Eq.4.0}}}}

Thus, a series of values for \tau_{(Q)} can be found from the slopes of the regression line for the log of {{EquationNote|Eq.3.0}} versus the log of \epsilon for each Q, based on {{EquationNote|Eq.4.1}}:

{{NumBlk|:|\tau_{(Q)} = {\lim_{\epsilon\to0}{\left[ \frac {\log{I_{{(Q)}_{[\epsilon]}}}} {\log{\epsilon}} \right ]}} |{{EquationRef|Eq.4.1}}}}

:*{{anchor|generalized dimension}}For the generalized dimension:

{{NumBlk|:|D_{(Q)} = {\lim_{\epsilon\to0} { \left [ \frac{\log{I_{{(Q)}_{[\epsilon]}}}}{\log{\epsilon^{-1}}} \right ]}} {(1-Q)^{-1}} |{{EquationRef|Eq.5.0}}}}

{{NumBlk|:|D_{(Q)} = \frac{\tau_{(Q)}}{Q-1}|{{EquationRef|Eq.5.1}}}}

{{NumBlk|:|\tau_{{(Q)}_{}} = D_{(Q)}\left(Q-1\right)|{{EquationRef|Eq.5.2}}}}

{{NumBlk|:|\tau_{(Q)} = \alpha_{(Q)}Q - f_{\left(\alpha_{(Q)}\right)}|{{EquationRef|Eq.5.3}}}}

:*\alpha_{(Q)} is estimated as the slope of the regression line for {{math|log A\epsilon,Q}} versus {{math|log \epsilon}} where:

{{NumBlk|:|A_{\epsilon,Q} = \sum_{i=1}^{N_\epsilon}{\mu_{{i,\epsilon}_{Q}}{P_{{i,\epsilon}_{Q}}}} |{{EquationRef|Eq.6.0}}}}

:*Then f_{\left(\alpha_{{(Q)}}\right)} is found from {{EquationNote|Eq.5.3}}.

:*The mean \tau_{(Q)} is estimated as the slope of the log-log regression line for \tau_{{(Q)}_{[\epsilon]}} versus \epsilon, where:

{{NumBlk|:|\tau_{(Q)_{[\epsilon]}} = \frac{\sum_{i=1}^{N_\epsilon} {P_{[i,\epsilon]}^{Q-1}}} {N_\epsilon} |{{EquationRef|Eq.6.1}}}}

In practice, the probability distribution depends on how the dataset is sampled, so optimizing algorithms have been developed to ensure adequate sampling.

Applications

Multifractal analysis has been successfully used in many fields, including physical,{{Cite journal |last1=Amin |first1=Kazi Rafsanjani |last2=Nagarajan |first2=Ramya |last3=Pandit |first3=Rahul |last4=Bid |first4=Aveek |date=2022-10-26 |title=Multifractal Conductance Fluctuations in High-Mobility Graphene in the Integer Quantum Hall Regime |url=https://link.aps.org/doi/10.1103/PhysRevLett.129.186802 |journal=Physical Review Letters |volume=129 |issue=18 |pages=186802 |doi=10.1103/PhysRevLett.129.186802|pmid=36374690 |arxiv=2112.14018 |bibcode=2022PhRvL.129r6802A |s2cid=245537293 }}{{Cite journal |last1=Amin |first1=Kazi Rafsanjani |last2=Ray |first2=Samriddhi Sankar |last3=Pal |first3=Nairita |last4=Pandit |first4=Rahul |last5=Bid |first5=Aveek |date=2018-02-22 |title=Exotic multifractal conductance fluctuations in graphene |journal=Communications Physics |language=en |volume=1 |issue=1 |pages=1–7 |doi=10.1038/s42005-017-0001-4 |bibcode=2018CmPhy...1....1A |s2cid=55555526 |issn=2399-3650|doi-access=free |arxiv=1804.04454 }} information, and biological sciences.{{Cite journal|date=2009|title=Fractal and multifractal analysis: A review|journal=Medical Image Analysis|volume=13|issue=4|pages=634–649|doi=10.1016/j.media.2009.05.003|pmid=19535282|last1=Lopes|first1=R.|last2=Betrouni|first2=N.}} For example, the quantification of residual crack patterns on the surface of reinforced concrete shear walls.{{Cite journal|last1=Ebrahimkhanlou|first1=Arvin|last2=Farhidzadeh|first2=Alireza|last3=Salamone|first3=Salvatore|date=2016-01-01|title=Multifractal analysis of crack patterns in reinforced concrete shear walls|journal=Structural Health Monitoring|language=en|volume=15|issue=1|pages=81–92|doi=10.1177/1475921715624502|s2cid=111619405|issn=1475-9217|doi-access=free}}

= Dataset distortion analysis =

{{anchor|distort}}

File:Distort.png.]]

Multifractal analysis has been used in several scientific fields to characterize various types of datasets.{{Cite journal | last1 = Trevino | first1 = J. | last2 = Liew | first2 = S. F. | last3 = Noh | first3 = H. | last4 = Cao | first4 = H. | last5 = Dal Negro | first5 = L. | title = Geometrical structure, multifractal spectra and localized optical modes of aperiodic Vogel spirals | doi = 10.1364/OE.20.003015 | journal = Optics Express | volume = 20 | issue = 3 | pages = 3015–33 | year = 2012 | pmid = 22330539| bibcode = 2012OExpr..20.3015T | doi-access = free }} In essence, multifractal analysis applies a distorting factor to datasets extracted from patterns, to compare how the data behave at each distortion. This is done using graphs known as multifractal spectra, analogous to viewing the dataset through a "distorting lens", as shown in the illustration. Several types of multifractal spectra are used in practise.

== D<sub>Q</sub> vs Q ==

{{anchor|dqvsq}}

{{anchor|dimensional ordering}}

File:Dqvsq.png (empirical box counting dimension = 1.49), and multifractal Hénon map (empirical box counting dimension = 1.29).]]

One practical multifractal spectrum is the graph of DQ vs Q, where DQ is the generalized dimension for a dataset and Q is an arbitrary set of exponents. The expression generalized dimension thus refers to a set of dimensions for a dataset (detailed calculations for determining the generalized dimension using box counting are described below).

== Dimensional ordering ==

The general pattern of the graph of DQ vs Q can be used to assess the scaling in a pattern. The graph is generally decreasing, sigmoidal around Q=0, where D(Q=0) ≥ D(Q=1) ≥ D(Q=2). As illustrated in the figure, variation in this graphical spectrum can help distinguish patterns. The image shows D(Q) spectra from a multifractal analysis of binary images of non-, mono-, and multi-fractal sets. As is the case in the sample images, non- and mono-fractals tend to have flatter D(Q) spectra than multifractals.

The generalized dimension also gives important specific information. D(Q=0) is equal to the capacity dimension, which—in the analysis shown in the figures here—is the box counting dimension. D(Q=1) is equal to the information dimension, and D(Q=2) to the correlation dimension. This relates to the "multi" in multifractal, where multifractals have multiple dimensions in the D(Q) versus Q spectra, but monofractals stay rather flat in that area.

== f(α) versus α ==

Another useful multifractal spectrum is the graph of f(\alpha) versus \alpha (see calculations). These graphs generally rise to a maximum that approximates the fractal dimension at Q=0, and then fall. Like DQ versus Q spectra, they also show typical patterns useful for comparing non-, mono-, and multi-fractal patterns. In particular, for these spectra, non- and mono-fractals converge on certain values, whereas the spectra from multifractal patterns typically form humps over a broader area.

= Generalized dimensions of species abundance distributions in space =

One application of Dq versus Q in ecology is characterizing the distribution of species. Traditionally the relative species abundances is calculated for an area without taking into account the locations of the individuals. An equivalent representation of relative species abundances are species ranks, used to generate a surface called the species-rank surface,{{Cite journal|last=Saravia|first=Leonardo A.|date=2015-08-01|title=A new method to analyse species abundances in space using generalized dimensions|url=https://peerj.com/preprints/745v5/|journal=Methods in Ecology and Evolution|volume=6|issue=11|pages=1298–1310|doi=10.1111/2041-210X.12417|issn=2041-210X|doi-access=free|bibcode=2015MEcEv...6.1298S }} which can be analyzed using generalized dimensions to detect different ecological mechanisms like the ones observed in the neutral theory of biodiversity, metacommunity dynamics, or niche theory.{{Cite journal|title = mfSBA: Multifractal analysis of spatial patterns in ecological communities|journal = F1000Research|date = 2014-01-01|pmc = 4197745|pmid = 25324962|doi = 10.12688/f1000research.3-14.v2|first = Leonardo A.|last = Saravia|volume=3|pages=14 | doi-access=free }}

See also

  • {{annotated link|de Rham curve}}
  • {{annotated link|Fractional Brownian motion}}
  • {{annotated link|Detrended fluctuation analysis}}
  • {{annotated link|Tweedie distributions}}
  • {{annotated link|Markov switching multifractal}}

References

{{Reflist}}

Further reading

  • {{Cite book |last=Falconer |first=Kenneth J. |title=Fractal geometry: mathematical foundations and applications |date=2014 |publisher=Wiley |isbn=978-1-119-94239-9 |edition=3. ed., 1. publ |location=Chichester |chapter=17. Multifractal measures}}
  • {{Citation |title=Multi-affine surfaces |date=1995 |work=Fractal Concepts in Surface Growth |pages=262–268 |editor-last=Barabási |editor-first=A.- L. |url=https://www.cambridge.org/core/books/fractal-concepts-in-surface-growth/multiaffine-surfaces/369764B5F6B50994C42E7A558472CFC7 |access-date=2024-06-05 |place=Cambridge |publisher=Cambridge University Press |doi=10.1017/CBO9780511599798.026 |isbn=978-0-521-48318-6 |editor2-last=Stanley |editor2-first=H. E.|url-access=subscription }}
  • {{Cite journal |last1=G |first1=Evertsz C. J.|last2=Mandelbrot |first2=Benoît B. |date=1992 |title=Multifractal measures |url=https://users.math.yale.edu/~bbm3/web_pdfs/136multifractal.pdf |journal=Chaos and Fractals New Frontiers of Science |pages=922–953|archive-url=https://web.archive.org/web/20230713074018/https://users.math.yale.edu/~bbm3/web_pdfs/136multifractal.pdf |archive-date=2023-07-13 }}
  • {{Cite book |last=Mandelbrot |first=Benoît B. |title=Fractals and scaling in finance: discontinuity, concentration, risk|date=1997 |publisher=Springer |isbn=978-0-387-98363-9 |series=Selecta |location=New York, NY Berlin Heidelberg}}
  • {{Cite book |last=Harte |first=David |url=http://dx.doi.org/10.1201/9781420036008 |title=Multifractals |date=2001-06-26 |publisher=Chapman and Hall/CRC |doi=10.1201/9781420036008 |isbn=978-0-429-12366-5}}
  • {{cite journal |author=Stanley H.E., Meakin P. |title=Multifractal phenomena in physics and chemistry |journal=Nature |volume=335 |year=1988 |pages=405–9 |url=http://polymer.bu.edu/hes/articles/sm88.pdf |format=Review |doi=10.1038/335405a0 |issue=6189 |bibcode=1988Natur.335..405S |s2cid=4318433}}
  • {{cite journal |first1=Alain |last1=Arneodo |first2=Benjamin |last2=Audit |first3=Pierre |last3=Kestener |first4=Stephane |last4=Roux |title=Wavelet-based multifractal analysis |journal=Scholarpedia |volume=3 |issue=3 |pages=4103 |year=2008 |doi=10.4249/scholarpedia.4103|issn=1941-6016|bibcode=2008SchpJ...3.4103A |doi-access=free }}