multivariate Laplace distribution

In the mathematical theory of probability, multivariate Laplace distributions are extensions of the Laplace distribution and the asymmetric Laplace distribution to multiple variables. The marginal distributions of symmetric multivariate Laplace distribution variables are Laplace distributions. The marginal distributions of asymmetric multivariate Laplace distribution variables are asymmetric Laplace distributions.{{cite book|title=The Laplace Distribution and Generalizations|author1=Kotz. Samuel |author2=Kozubowski, Tomasz J. |author3=Podgorski, Krzysztof |pages=229–245|year=2001|publisher=Birkhauser|isbn=0817641661}}

Symmetric multivariate Laplace distribution

{{Probability distribution

| name = Multivariate Laplace (symmetric)

| type = multivariate

| pdf_image =

| cdf_image =

| notation =

| parameters = μRklocation
ΣRk×kcovariance (positive-definite matrix)

| support = xμ + span(Σ) ⊆ Rk

| pdf = :If \boldsymbol\mu = \mathbf{0},
\frac 2 {(2\pi)^{k/2} \left|\boldsymbol\Sigma\right|^{1/2}} \left( \frac {\mathbf{x}'\boldsymbol\Sigma^{-1} \mathbf{x}}{2} \right)^{v/2} K_v \left(\sqrt{2\mathbf{x}'\boldsymbol\Sigma^{-1} \mathbf{x}} \right),
where v = (2 - k) / 2 and K_v is the modified Bessel function of the second kind.

| mean = μ

| median =

| mode = μ

| variance = Σ

| skewness =0

| kurtosis =

| entropy =

| mgf =

| char = \frac{\exp ( i\boldsymbol\mu'\mathbf{t} )}{1 + \tfrac{1}{2} \mathbf{t}'\boldsymbol\Sigma \mathbf{t} }

}}

A typical characterization of the symmetric multivariate Laplace distribution has the characteristic function:

: \varphi(t;\boldsymbol\mu,\boldsymbol\Sigma) = \frac{\exp ( i\boldsymbol\mu'\mathbf{t} )}{1 + \tfrac{1}{2} \mathbf{t}'\boldsymbol\Sigma \mathbf{t}},

where \boldsymbol\mu is the vector of means for each variable and \boldsymbol\Sigma is the covariance matrix.{{cite journal|title=Goodness-of-fit tests for multivariate Laplace distributions|author=Fragiadakis, Konstantinos & Meintanis, Simos G.|journal=Mathematical and Computer Modelling|volume=53|issue=5–6|date=March 2011|pages=769–779|doi=10.1016/j.mcm.2010.10.014|doi-access=free}}

Unlike the multivariate normal distribution, even if the covariance matrix has zero covariance and correlation the variables are not independent. The symmetric multivariate Laplace distribution is elliptical.

=Probability density function=

If \boldsymbol\mu = \mathbf{0}, the probability density function (pdf) for a k-dimensional multivariate Laplace distribution becomes:

: f_{\mathbf x}(x_1,\ldots,x_k) = \frac 2 {(2\pi)^{k/2} |\boldsymbol\Sigma|^{0.5}} \left( \frac {\mathbf{x}'\boldsymbol\Sigma^{-1} \mathbf{x}}{2} \right)^{v/2} K_v \left(\sqrt{2\mathbf{x}'\boldsymbol\Sigma^{-1} \mathbf{x}} \right),

where:

v = (2 - k) / 2 and K_v is the modified Bessel function of the second kind.

In the correlated bivariate case, i.e., k = 2, with \mu_1 = \mu_2 = 0 the pdf reduces to:

: f_{\mathbf x}(x_1,x_2) = \frac 1 {\pi \sigma_1 \sigma_2 \sqrt{1-\rho^2}} K_0 \left( \sqrt { \frac { 2 \left( \frac {x_1^2}{\sigma_1^2} - \frac{2 \rho x_1 x_2}{\sigma_1 \sigma_2} + \frac {x_2^2}{\sigma_2^2} \right)} { 1-\rho^2 } } \right),

where:

\sigma_1 and \sigma_2 are the standard deviations of x_1 and x_2, respectively, and \rho is the correlation coefficient of x_1 and x_2.

For the uncorrelated bivariate Laplace case, that is k = 2, \mu_1 = \mu_2 = \rho = 0 and \sigma_1 = \sigma_2 = 1, the pdf becomes:

: f_{\mathbf x}(x_1,x_2) = \frac 1 \pi K_0 \left( \sqrt { 2(x_1^2 + x_2^2) } \right).

Asymmetric multivariate Laplace distribution

{{Probability distribution

| name = Multivariate Laplace (asymmetric)

| type = multivariate

| pdf_image =

| cdf_image =

| notation =

| parameters = μRklocation
ΣRk×kcovariance (positive-definite matrix)

| support = xμ + span(Σ) ⊆ Rk

| pdf = \frac {2 e^{\mathbf{x}'\boldsymbol\Sigma^{-1} \boldsymbol\mu} }{(2\pi)^{\frac{k}{2}} |\boldsymbol\Sigma|^{0.5}} \Big( \frac {\mathbf{x}'\boldsymbol\Sigma^{-1} \mathbf{x}}{2 + \boldsymbol\mu'\boldsymbol\Sigma^{-1} \boldsymbol\mu} \Big)^\frac{v}{2} K_v \Big(\sqrt{(2 + \boldsymbol\mu'\boldsymbol\Sigma^{-1} \boldsymbol\mu)(\mathbf{x}'\boldsymbol\Sigma^{-1} \mathbf{x})} \Big)
where v = (2 - k) / 2 and K_v is the modified Bessel function of the second kind.

| mean = μ

| median =

| mode =

| variance = Σ + μ ' μ

| skewness = non-zero unless μ=0

| kurtosis =

| entropy =

| mgf =

| char = \frac{1}{1 + \tfrac{1}{2} \mathbf{t}'\boldsymbol\Sigma \mathbf{t} - i\boldsymbol\mu\mathbf{t} }

}}

A typical characterization of the asymmetric multivariate Laplace distribution has the characteristic function:

: \varphi(t;\boldsymbol\mu,\boldsymbol\Sigma) = \frac{1}{1 + \tfrac{1}{2} \mathbf{t}'\boldsymbol\Sigma \mathbf{t} - i\boldsymbol\mu\mathbf{t} }.

As with the symmetric multivariate Laplace distribution, the asymmetric multivariate Laplace distribution has mean \boldsymbol\mu, but the covariance becomes \boldsymbol\Sigma + \boldsymbol\mu'\boldsymbol\mu.{{cite journal|title=Multivariate Generalize Laplace Distributions and Related Random Fields|author1=Kozubowski, Tomasz J. |author2=Podgorski, Krzysztof |author3=Rychlik, Igor |journal=Journal of Multivariate Analysis |publisher=University of Gothenburg|year=2010|volume=113 |pages=59–72 |doi=10.1016/j.jmva.2012.02.010 |s2cid=206252976 |doi-access=free }} The asymmetric multivariate Laplace distribution is not elliptical unless \boldsymbol\mu = \mathbf{0}, in which case the distribution reduces to the symmetric multivariate Laplace distribution with \boldsymbol\mu = \mathbf{0}.

The probability density function (pdf) for a k-dimensional asymmetric multivariate Laplace distribution is:

: f_{\mathbf x}(x_1,\ldots,x_k) = \frac {2 e^{\mathbf{x}'\boldsymbol\Sigma^{-1} \boldsymbol\mu} }{(2\pi)^{k/2} |\boldsymbol\Sigma|^{0.5}} \Big( \frac {\mathbf{x}'\boldsymbol\Sigma^{-1} \mathbf{x}}{2 + \boldsymbol\mu'\boldsymbol\Sigma^{-1} \boldsymbol\mu} \Big)^{v/2} K_v \Big(\sqrt{(2 + \boldsymbol\mu'\boldsymbol\Sigma^{-1} \boldsymbol\mu)(\mathbf{x}'\boldsymbol\Sigma^{-1} \mathbf{x})} \Big),

where:

v = (2 - k) / 2 and K_v is the modified Bessel function of the second kind.

The asymmetric Laplace distribution, including the special case of \boldsymbol\mu = \mathbf{0}, is an example of a geometric stable distribution. It represents the limiting distribution for a sum of independent, identically distributed random variables with finite variance and covariance where the number of elements to be summed is itself an independent random variable distributed according to a geometric distribution. Such geometric sums can arise in practical applications within biology, economics and insurance. The distribution may also be applicable in broader situations to model multivariate data with heavier tails than a normal distribution but finite moments.

The relationship between the exponential distribution and the Laplace distribution allows for a simple method for simulating bivariate asymmetric Laplace variables (including for the case of \boldsymbol\mu = \mathbf{0}). Simulate a bivariate normal random variable vector \mathbf{Y} from a distribution with \mu_1=\mu_2=0 and covariance matrix \boldsymbol\Sigma. Independently simulate an exponential random variable \mathbf{W} from an Exp(1) distribution. \mathbf{X} = \sqrt{W} \mathbf{Y} + W \boldsymbol\mu will be distributed (asymmetric) bivariate Laplace with mean \boldsymbol\mu and covariance matrix \boldsymbol\Sigma.

References