n conjecture

{{short description|Generalization of the abc conjecture to more than three integers}}

{{technical|date=July 2015}}

{{No footnotes|date=November 2020}}

In number theory, the n conjecture is a conjecture stated by {{Harvtxt|Browkin|Brzeziński|1994}} as a generalization of the abc conjecture to more than three integers.

Formulations

Given n \ge 3, let a_1,a_2,...,a_n \in \mathbb{Z} satisfy three conditions:

: (i) \gcd(a_1,a_2,...,a_n)=1

: (ii) a_1 + a_2 + ... + a_n = 0

: (iii) no proper subsum of a_1,a_2,...,a_n equals 0

First formulation

The n conjecture states that for every \varepsilon>0, there is a constant C depending on n and \varepsilon, such that:

\operatorname{max}(|a_1|,|a_2|,...,|a_n|)< C_{n,\varepsilon}\operatorname{rad}(|a_1| \cdot |a_2| \cdot \ldots \cdot |a_n|)^{2n - 5 + \varepsilon}

where \operatorname{rad}(m) denotes the radical of an integer m, defined as the product of the distinct prime factors of m.

Second formulation

Define the quality of a_1,a_2,...,a_n as

: q(a_1,a_2,...,a_n) = \frac{\log(\operatorname{max}(|a_1|,|a_2|,...,|a_n|))}{\log(\operatorname{rad}(|a_1| \cdot |a_2| \cdot ... \cdot |a_n|))}

The n conjecture states that \limsup q(a_1,a_2,...,a_n)= 2n-5 .

Stronger form

{{Harvtxt|Vojta|1998}} proposed a stronger variant of the n conjecture, where setwise coprimeness of a_1,a_2,...,a_n is replaced by pairwise coprimeness of a_1,a_2,...,a_n.

There are two different formulations of this strong n conjecture.

Given n \ge 3, let a_1,a_2,...,a_n \in \mathbb{Z} satisfy three conditions:

: (i) a_1,a_2,...,a_n are pairwise coprime

: (ii) a_1 + a_2 + ... + a_n = 0

: (iii) no proper subsum of a_1,a_2,...,a_n equals 0

First formulation

The strong n conjecture states that for every \varepsilon>0, there is a constant C depending on n and \varepsilon, such that:

\operatorname{max}(|a_1|,|a_2|,...,|a_n|)< C_{n,\varepsilon}\operatorname{rad}(|a_1| \cdot |a_2| \cdot \ldots \cdot |a_n|)^{1 + \varepsilon}

Second formulation

Define the quality of a_1,a_2,...,a_n as

: q(a_1,a_2,...,a_n) = \frac{\log(\operatorname{max}(|a_1|,|a_2|,...,|a_n|))}{\log(\operatorname{rad}(|a_1| \cdot |a_2| \cdot ... \cdot |a_n|))}

The strong n conjecture states that \limsup q(a_1,a_2,...,a_n) = 1.

References

  • {{Cite journal |authorlink=Jerzy Browkin |first1=Jerzy |last1=Browkin |first2=Juliusz |last2=Brzeziński | title=Some remarks on the abc-conjecture | journal=Math. Comp. | volume=62 | pages=931–939 | year=1994 | doi=10.2307/2153551 | jstor=2153551 | issue=206|bibcode=1994MaCom..62..931B }}
  • {{cite journal

| last = Vojta | first = Paul

| arxiv = math/9806171

| doi = 10.1155/S1073792898000658 |doi-access=free

| issue = 21

| journal = International Mathematics Research Notices

| mr = 1663215

| pages = 1103–1116

| title = A more general {{mvar|abc}} conjecture

| year = 1998| volume = 1998

}}

{{DISPLAYTITLE:n conjecture}}

Category:Conjectures

Category:Unsolved problems in number theory

Category:Abc conjecture