narcissistic number

{{short description|Integer expressible as the sum of its own digits each raised to the power of the number of digits}}

{{Other uses|Narcissism (disambiguation)}}

In number theory, a narcissistic number{{MathWorld |title=Narcissistic Number |urlname=NarcissisticNumber}}[http://www.cs.umd.edu/Honors/reports/NarcissisticNums/NarcissisticNums.html Perfect and PluPerfect Digital Invariants] {{webarchive|url=https://web.archive.org/web/20071010035540/http://www.cs.umd.edu/Honors/reports/NarcissisticNums/NarcissisticNums.html |date=2007-10-10 }} by Scott Moore (also known as a pluperfect digital invariant (PPDI),[https://web.archive.org/web/20091027123639/http://www.geocities.com/~harveyh/narciss.htm PPDI (Armstrong) Numbers] by Harvey Heinz an Armstrong number{{Cite web |title=Armstrong Numbers |url=https://deimel.org/rec_math/dik1.htm |access-date=2025-02-02 |website=deimel.org}} (after Michael F. Armstrong){{Cite web |last=Deimel |first=Lionel |title=Mystery Solved! |url=http://blog.deimel.org/2010/05/mystery-solved.html |access-date=2025-02-02 |language=en}} or a plus perfect number){{OEIS|id=A005188}} in a given number base b is a number that is the sum of its own digits each raised to the power of the number of digits.

Definition

Let n be a natural number. We define the narcissistic function for base b > 1 F_{b} : \mathbb{N} \rightarrow \mathbb{N} to be the following:

: F_{b}(n) = \sum_{i=0}^{k - 1} d_i^k.

where k = \lfloor \log_{b}{n} \rfloor + 1 is the number of digits in the number in base b, and

: d_i = \frac{n \bmod{b^{i+1}} - n \bmod b^i}{b^i}

is the value of each digit of the number. A natural number n is a narcissistic number if it is a fixed point for F_{b}, which occurs if F_{b}(n) = n. The natural numbers 0 \leq n < b are trivial narcissistic numbers for all b, all other narcissistic numbers are nontrivial narcissistic numbers.

For example, the number 153 in base b = 10 is a narcissistic number, because k = 3 and 153 = 1^3 + 5^3 + 3^3.

A natural number n is a sociable narcissistic number if it is a periodic point for F_{b}, where F_{b}^p(n) = n for a positive integer p (here F_{b}^p is the pth iterate of F_b), and forms a cycle of period p. A narcissistic number is a sociable narcissistic number with p = 1, and an amicable narcissistic number is a sociable narcissistic number with p = 2.

All natural numbers n are preperiodic points for F_{b}, regardless of the base. This is because for any given digit count k, the minimum possible value of n is b^{k - 1}, the maximum possible value of n is b^{k} - 1 \leq b^k, and the narcissistic function value is F_{b}(n) = k(b-1)^k. Thus, any narcissistic number must satisfy the inequality b^{k - 1} \leq k(b-1)^k \leq b^k. Multiplying all sides by \frac{b}{(b - 1)^k}, we get {\left(\frac{b}{b - 1}\right)}^{k} \leq bk \leq b{\left(\frac{b}{b - 1}\right)}^{k}, or equivalently, k \leq {\left(\frac{b}{b - 1}\right)}^{k} \leq bk. Since \frac{b}{b - 1} \geq 1, this means that there will be a maximum value k where {\left(\frac{b}{b - 1}\right)}^{k} \leq bk, because of the exponential nature of {\left(\frac{b}{b - 1}\right)}^{k} and the linearity of bk. Beyond this value k, F_{b}(n) \leq n always. Thus, there are a finite number of narcissistic numbers, and any natural number is guaranteed to reach a periodic point or a fixed point less than b^{k} - 1, making it a preperiodic point. Setting b equal to 10 shows that the largest narcissistic number in base 10 must be less than 10^{60}.

The number of iterations i needed for F_{b}^{i}(n) to reach a fixed point is the narcissistic function's persistence of n, and undefined if it never reaches a fixed point.

A base b has at least one two-digit narcissistic number if and only if b^2 + 1 is not prime, and the number of two-digit narcissistic numbers in base b equals \tau(b^2+1)-2, where \tau(n) is the number of positive divisors of n.

Every base b \geq 3 that is not a multiple of nine has at least one three-digit narcissistic number. The bases that do not are

:2, 72, 90, 108, 153, 270, 423, 450, 531, 558, 630, 648, 738, 1044, 1098, 1125, 1224, 1242, 1287, 1440, 1503, 1566, 1611, 1620, 1800, 1935, ... {{OEIS|id=A248970}}

There are only 88 narcissistic numbers in base 10, of which the largest is

:115,132,219,018,763,992,565,095,597,973,971,522,401

with 39 digits.

Narcissistic numbers and cycles of ''F''<sub>''b''</sub> for specific ''b''

All numbers are represented in base b. '#' is the length of each known finite sequence.

class="wikitable"

! b

! Narcissistic numbers

! #

! Cycles

! OEIS sequence(s)

--

| 2

0, 12\varnothing
--

| 3

0, 1, 2, 12, 22, 1226\varnothing
--

| 4

0, 1, 2, 3, 130, 131, 203, 223, 313, 332, 1103, 330312\varnothing{{OEIS link|id=A010344}} and {{OEIS link|id=A010343}}
--

| 5

0, 1, 2, 3, 4, 23, 33, 103, 433, 2124, 2403, 3134, 124030, 124031, 242423, 434434444, ...181234 → 2404 → 4103 → 2323 → 1234

3424 → 4414 → 11034 → 20034 → 20144 → 31311 → 3424

1044302 → 2110314 → 1044302

1043300 → 1131014 → 1043300

{{OEIS link|id=A010346}}
--

| 6

0, 1, 2, 3, 4, 5, 243, 514, 14340, 14341, 14432, 23520, 23521, 44405, 435152, 5435254, 12222215, 555435035 ...3144 → 52 → 45 → 105 → 330 → 130 → 44

13345 → 33244 → 15514 → 53404 → 41024 → 13345

14523 → 32253 → 25003 → 23424 → 14523

2245352 → 3431045 → 2245352

12444435 → 22045351 → 30145020 → 13531231 → 12444435

115531430 → 230104215 → 115531430

225435342 → 235501040 → 225435342

{{OEIS link|id=A010348}}
--

| 7

0, 1, 2, 3, 4, 5, 6, 13, 34, 44, 63, 250, 251, 305, 505, 12205, 12252, 13350, 13351, 15124, 36034, 205145, 1424553, 1433554, 3126542, 4355653, 6515652, 125543055, ...60{{OEIS link|id=A010350}}
--

| 8

0, 1, 2, 3, 4, 5, 6, 7, 24, 64, 134, 205, 463, 660, 661, 40663, 42710, 42711, 60007, 62047, 636703, 3352072, 3352272, ...63{{OEIS link|id=A010354}} and {{OEIS link|id=A010351}}
--

| 9

0, 1, 2, 3, 4, 5, 6, 7, 8, 45, 55, 150, 151, 570, 571, 2446, 12036, 12336, 14462, 2225764, 6275850, 6275851, 12742452, ...59{{OEIS link|id=A010353}}
--

| 10

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54748, 92727, 93084, 548834, ...88{{OEIS link|id=A005188}}
--

| 11

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, 56, 66, 105, 307, 708, 966, A06, A64, 8009, 11720, 11721, 12470, ...135{{OEIS link|id=A0161948}}
--

| 12

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, 25, A5, 577, 668, A83, 14765, 938A4, 369862, A2394A, ...88{{OEIS link|id=A161949}}
--

| 13

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, 14, 36, 67, 77, A6, C4, 490, 491, 509, B85, 3964, 22593, 5B350, ...202{{OEIS link|id=A0161950}}
--

| 14

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, 136, 409, 74AB5, 153A632, ...103{{OEIS link|id=A0161951}}
--

| 15

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, 78, 88, C3A, D87, 1774, E819, E829, 7995C, 829BB, A36BC, ...203{{OEIS link|id=A0161952}}
--

| 16

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 156, 173, 208, 248, 285, 4A5, 5B0, 5B1, 60B, 64B, 8C0, 8C1, 99A, AA9, AC3, CA8, E69, EA0, EA1, B8D2, 13579, 2B702, 2B722, 5A07C, 5A47C, C00E0, C00E1, C04E0, C04E1, C60E7, C64E7, C80E0, C80E1, C84E0, C84E1, ...294{{OEIS link|id=A161953}}

Extension to negative integers

Narcissistic numbers can be extended to the negative integers by use of a signed-digit representation to represent each integer.

See also

References

{{reflist}}

{{refbegin}}

  • Joseph S. Madachy, Mathematics on Vacation, Thomas Nelson & Sons Ltd. 1966, pages 163-175.
  • Rose, Colin (2005), Radical narcissistic numbers, Journal of Recreational Mathematics, 33(4), 2004–2005, pages 250-254.
  • [https://web.archive.org/web/20040606020332/http://mathews-archive.com/digit-related-numbers/pdi.html Perfect Digital Invariants] by Walter Schneider

{{refend}}