negative multinomial distribution

{{Probability distribution

| box_width = 350px

| type = mass

| notation = \textrm{NM}(x_0,\,\mathbf{p})

| parameters = x_0>0 — the number of failures before the experiment is stopped,
\mathbf{p}Rmm-vector of "success" probabilities,


p0 = 1 − (p1+…+pm) — the probability of a "failure".

| support = x_i \in \{0,1,2,\ldots\}, 1\leq i\leq m

| pdf = \Gamma\!\left(\sum_{i=0}^m{x_i}\right)\frac{p_0^{x_0}}{\Gamma(x_0)} \prod_{i=1}^m{\frac{p_i^{x_i}}{x_i!}},
where Γ(x) is the Gamma function.

| cdf =

| mean = \tfrac{x_0}{p_0}\,\mathbf{p}

| variance = \tfrac{x_0}{p_0^2}\,\mathbf{pp}' + \tfrac{x_0}{p_0}\,\operatorname{diag}(\mathbf{p})

| mode =

| entropy =

| mgf = \bigg(\frac{p_0}{1 - \sum_{j=1}^m p_j e^{t_j}}\bigg)^{\!x_0}

| cf = \bigg(\frac{p_0}{1 - \sum_{j=1}^m p_j e^{it_j}}\bigg)^{\!x_0}

}}

In probability theory and statistics, the negative multinomial distribution is a generalization of the negative binomial distribution (NB(x0, p)) to more than two outcomes.Le Gall, F. The modes of a negative multinomial distribution, Statistics & Probability Letters, Volume 76, Issue 6, 15 March 2006, Pages 619-624, ISSN 0167-7152, [http://www.sciencedirect.com/science/article/B6V1D-4H7T8P0-1/2/54b376fc96fdd6ad4331325a822df997 10.1016/j.spl.2005.09.009].

As with the univariate negative binomial distribution, if the parameter x_0 is a positive integer, the negative multinomial distribution has an urn model interpretation. Suppose we have an experiment that generates m+1≥2 possible outcomes, {X0,...,Xm}, each occurring with non-negative probabilities {p0,...,pm} respectively. If sampling proceeded until n observations were made, then {X0,...,Xm} would have been multinomially distributed. However, if the experiment is stopped once X0 reaches the predetermined value x0 (assuming x0 is a positive integer), then the distribution of the m-tuple {X1,...,Xm} is negative multinomial. These variables are not multinomially distributed because their sum X1+...+Xm is not fixed, being a draw from a negative binomial distribution.

Properties

=Marginal distributions=

If m-dimensional x is partitioned as follows

\mathbf{X}

=

\begin{bmatrix}

\mathbf{X}^{(1)} \\

\mathbf{X}^{(2)}

\end{bmatrix}

\text{ with sizes }\begin{bmatrix} n \times 1 \\ (m-n) \times 1 \end{bmatrix}

and accordingly \boldsymbol{p}

\boldsymbol p

=

\begin{bmatrix}

\boldsymbol p^{(1)} \\

\boldsymbol p^{(2)}

\end{bmatrix}

\text{ with sizes }\begin{bmatrix} n \times 1 \\ (m-n) \times 1 \end{bmatrix}

and let

q = 1-\sum_i p_i^{(2)} = p_0+\sum_i p_i^{(1)}

The marginal distribution of \boldsymbol X^{(1)} is \mathrm{NM}(x_0,p_0/q, \boldsymbol p^{(1)}/q ). That is the marginal distribution is also negative multinomial with the \boldsymbol p^{(2)} removed and the remaining p's properly scaled so as to add to one.

The univariate marginal m=1 is said to have a negative binomial distribution.

=Conditional distributions=

The conditional distribution of \mathbf{X}^{(1)} given \mathbf{X}^{(2)}=\mathbf{x}^{(2)} is \mathrm{NM}(x_0+\sum{x_i^{(2)}},\mathbf{p}^{(1)}) . That is,

\Pr(\mathbf{x}^{(1)}\mid \mathbf{x}^{(2)}, x_0, \mathbf{p} )= \Gamma\!\left(\sum_{i=0}^m{x_i}\right)\frac{(1-\sum_{i=1}^n{p_i^{(1)}})^{x_0+\sum_{i=1}^{m-n}x_i^{(2)}}}{\Gamma(x_0+\sum_{i=1}^{m-n}x_i^{(2)})}\prod_{i=1}^n{\frac{(p_i^{(1)})^{x_i}}{(x_i^{(1)})!}}.

=Independent sums=

If \mathbf{X}_1 \sim \mathrm{NM}(r_1, \mathbf{p}) and If \mathbf{X}_2 \sim \mathrm{NM}(r_2, \mathbf{p}) are independent, then

\mathbf{X}_1+\mathbf{X}_2 \sim \mathrm{NM}(r_1+r_2, \mathbf{p}). Similarly and conversely, it is easy to see from the characteristic function that the negative multinomial is infinitely divisible.

=Aggregation=

If

\mathbf{X} = (X_1, \ldots, X_m)\sim\operatorname{NM}(x_0, (p_1,\ldots,p_m))

then, if the random variables with subscripts i and j are dropped from the vector and replaced by their sum,

\mathbf{X}' = (X_1, \ldots, X_i + X_j, \ldots, X_m)\sim\operatorname{NM} (x_0, (p_1, \ldots, p_i + p_j, \ldots, p_m)).

This aggregation property may be used to derive the marginal distribution of X_i mentioned above.

=Correlation matrix=

The entries of the correlation matrix are

\rho(X_i,X_i) = 1.

\rho(X_i,X_j) = \frac{\operatorname{cov}(X_i,X_j)}{\sqrt{\operatorname{var}(X_i)\operatorname{var}(X_j)}} = \sqrt{\frac{p_i p_j}{(p_0+p_i)(p_0+p_j)}}.

Parameter estimation

=Method of Moments=

If we let the mean vector of the negative multinomial be

\boldsymbol{\mu}=\frac{x_0}{p_0}\mathbf{p}

and covariance matrix

\boldsymbol{\Sigma}=\tfrac{x_0}{p_0^2}\,\mathbf{p}\mathbf{p}' + \tfrac{x_0}{p_0}\,\operatorname{diag}(\mathbf{p}),

then it is easy to show through properties of determinants that |\boldsymbol{\Sigma}| = \frac{1}{p_0}\prod_{i=1}^m{\mu_i}. From this, it can be shown that

x_0=\frac{\sum{\mu_i}\prod{\mu_i}}{|\boldsymbol{\Sigma}|-\prod{\mu_i}}

and

\mathbf{p}= \frac{|\boldsymbol{\Sigma}|-\prod{\mu_i}}{|\boldsymbol{\Sigma}|\sum{\mu_i}}\boldsymbol{\mu}.

Substituting sample moments yields the method of moments estimates

\hat{x}_0=\frac{(\sum_{i=1}^{m}{\bar{x_i})}\prod_{i=1}^{m}{\bar{x_i}}}{|\mathbf{S}|-\prod_{i=1}^{m}{\bar{x_i}}}

and

\hat{\mathbf{p}}=\left(\frac{|\boldsymbol{S}|-\prod_{i=1}^{m}{\bar{x}_i}}{|\boldsymbol{S}|\sum_{i=1}^{m}{\bar{x}_i}}\right)\boldsymbol{\bar{x}}

Related distributions

References

Waller LA and Zelterman D. (1997). Log-linear modeling with the negative multi-

nomial distribution. Biometrics 53: 971–82.

Further reading

{{cite book | last1=Johnson | first1= Norman L. | last2=Kotz | first2=Samuel | last3= Balakrishnan | first3=N.| title=Discrete Multivariate Distributions | chapter=Chapter 36: Negative Multinomial and Other Multinomial-Related Distributions | year=1997 | publisher=Wiley | isbn=978-0-471-12844-1}}

{{ProbDistributions|multivariate}}

{{Use dmy dates|date=September 2019}}

{{DEFAULTSORT:Negative Multinomial Distribution}}

Category:Factorial and binomial topics

Category:Multivariate discrete distributions