noncototient

{{Short description|Positive integers with specific properties}}

In number theory, a noncototient is a positive integer {{mvar|n}} that cannot be expressed as the difference between a positive integer {{mvar|m}} and the number of coprime integers below it. That is, {{math|1=mφ(m) = n}}, where {{mvar|φ}} stands for Euler's totient function, has no solution for {{mvar|m}}. The cototient of {{mvar|n}} is defined as {{math|nφ(n)}}, so a noncototient is a number that is never a cototient.

It is conjectured that all noncototients are even. This follows from a modified form of the slightly stronger version of the Goldbach conjecture: if the even number {{mvar|n}} can be represented as a sum of two distinct primes {{mvar|p}} and {{mvar|q}}, then

\begin{align}

pq - \varphi(pq) &= pq - (p-1)(q-1) \\

&= p + q - 1 \\

&= n - 1.

\end{align}

It is expected that every even number larger than 6 is a sum of two distinct primes, so probably no odd number larger than 5 is a noncototient. The remaining odd numbers are covered by the observations {{math|1=1 = 2 – φ(2)}}, {{math|1=3 = 9 – φ(9)}}, and {{math|1=5 = 25 – φ(25)}}.

For even numbers, it can be shown

\begin{align}

2pq - \varphi(2pq) &= 2pq - (p-1)(q-1) \\

&= pq + p + q - 1 \\

&= (p+1)(q+1) - 2

\end{align}

Thus, all even numbers {{mvar|n}} such that {{math|n + 2}} can be written as {{math|(p + 1)(q + 1)}} with {{mvar|p, q}} primes are cototients.

The first few noncototients are

:10, 26, 34, 50, 52, 58, 86, 100, 116, 122, 130, 134, 146, 154, 170, 172, 186, 202, 206, 218, 222, 232, 244, 260, 266, 268, 274, 290, 292, 298, 310, 326, 340, 344, 346, 362, 366, 372, 386, 394, 404, 412, 436, 466, 470, 474, 482, 490, ... {{OEIS|id=A005278}}

The cototient of {{mvar|n}} are

:0, 1, 1, 2, 1, 4, 1, 4, 3, 6, 1, 8, 1, 8, 7, 8, 1, 12, 1, 12, 9, 12, 1, 16, 5, 14, 9, 16, 1, 22, 1, 16, 13, 18, 11, 24, 1, 20, 15, 24, 1, 30, 1, 24, 21, 24, 1, 32, 7, 30, 19, 28, 1, 36, 15, 32, 21, 30, 1, 44, 1, 32, 27, 32, 17, 46, 1, 36, 25, 46, 1, 48, ... {{OEIS|id=A051953}}

Least {{mvar|k}} such that the cototient of {{mvar|k}} is {{mvar|n}} are (start with {{math|1=n = 0}}, 0 if no such {{mvar|k}} exists)

:1, 2, 4, 9, 6, 25, 10, 15, 12, 21, 0, 35, 18, 33, 26, 39, 24, 65, 34, 51, 38, 45, 30, 95, 36, 69, 0, 63, 52, 161, 42, 87, 48, 93, 0, 75, 54, 217, 74, 99, 76, 185, 82, 123, 60, 117, 66, 215, 72, 141, 0, ... {{OEIS|id=A063507}}

Greatest {{mvar|k}} such that the cototient of {{mvar|k}} is {{mvar|n}} are (start with {{math|1=n = 0}}, 0 if no such {{mvar|k}} exists)

:1, ∞, 4, 9, 8, 25, 10, 49, 16, 27, 0, 121, 22, 169, 26, 55, 32, 289, 34, 361, 38, 85, 30, 529, 46, 133, 0, 187, 52, 841, 58, 961, 64, 253, 0, 323, 68, 1369, 74, 391, 76, 1681, 82, 1849, 86, 493, 70, 2209, 94, 589, 0, ... {{OEIS|id=A063748}}

Number of {{mvar|k}}s such that {{math|kφ(k)}} is {{mvar|n}} are (start with {{math|1=n = 0}})

:1, ∞, 1, 1, 2, 1, 1, 2, 3, 2, 0, 2, 3, 2, 1, 2, 3, 3, 1, 3, 1, 3, 1, 4, 4, 3, 0, 4, 1, 4, 3, 3, 4, 3, 0, 5, 2, 2, 1, 4, 1, 5, 1, 4, 2, 4, 2, 6, 5, 5, 0, 3, 0, 6, 2, 4, 2, 5, 0, 7, 4, 3, 1, 8, 4, 6, 1, 3, 1, 5, 2, 7, 3, ... {{OEIS|id=A063740}}

Erdős (1913–1996) and Sierpinski (1882–1969) asked whether there exist infinitely many noncototients. This was finally answered in the affirmative by Browkin and Schinzel (1995), who showed every member of the infinite family 2^k \cdot 509203 is an example (See Riesel number). Since then other infinite families, of roughly the same form, have been given by Flammenkamp and Luca (2000).

class="wikitable mw-collapsible mw-collapsed"

|+ class="nowrap" | Cototients of {{mvar|n}} from 1-144

! {{mvar|n}} !! Numbers {{mvar|k}} such that {{math|1=kφ(k) = n}}

1

| all primes

2

| 4

3

| 9

4

| 6, 8

5

| 25

6

| 10

7

| 15, 49

8

| 12, 14, 16

9

| 21, 27

10

|

11

| 35, 121

12

| 18, 20, 22

13

| 33, 169

14

| 26

15

| 39, 55

16

| 24, 28, 32

17

| 65, 77, 289

18

| 34

19

| 51, 91, 361

20

| 38

21

| 45, 57, 85

22

| 30

23

| 95, 119, 143, 529

24

| 36, 40, 44, 46

25

| 69, 125, 133

26

|

27

| 63, 81, 115, 187

28

| 52

29

| 161, 209, 221, 841

30

| 42, 50, 58

31

| 87, 247, 961

32

| 48, 56, 62, 64

33

| 93, 145, 253

34

|

35

| 75, 155, 203, 299, 323

36

| 54, 68

37

| 217, 1369

38

| 74

39

| 99, 111, 319, 391

40

| 76

41

| 185, 341, 377, 437, 1681

42

| 82

43

| 123, 259, 403, 1849

44

| 60, 86

45

| 117, 129, 205, 493

46

| 66, 70

47

| 215, 287, 407, 527, 551, 2209

48

| 72, 80, 88, 92, 94

49

| 141, 301, 343, 481, 589

50

|

51

| 235, 451, 667

52

|

53

| 329, 473, 533, 629, 713, 2809

54

| 78, 106

55

| 159, 175, 559, 703

56

| 98, 104

57

| 105, 153, 265, 517, 697

58

|

59

| 371, 611, 731, 779, 851, 899, 3481

60

| 84, 100, 116, 118

61

| 177, 817, 3721

62

| 122

63

| 135, 147, 171, 183, 295, 583, 799, 943

64

| 96, 112, 124, 128

65

| 305, 413, 689, 893, 989, 1073

66

| 90

67

| 427, 1147, 4489

68

| 134

69

| 201, 649, 901, 1081, 1189

70

| 102, 110

71

| 335, 671, 767, 1007, 1247, 1271, 5041

72

| 108, 136, 142

73

| 213, 469, 793, 1333, 5329

74

| 146

75

| 207, 219, 275, 355, 1003, 1219, 1363

76

| 148

77

| 245, 365, 497, 737, 1037, 1121, 1457, 1517

78

| 114

79

| 511, 871, 1159, 1591, 6241

80

| 152, 158

81

| 189, 237, 243, 781, 1357, 1537

82

| 130

83

| 395, 803, 923, 1139, 1403, 1643, 1739, 1763, 6889

84

| 164, 166

85

| 165, 249, 325, 553, 949, 1273

86

|

87

| 415, 1207, 1711, 1927

88

| 120, 172

89

| 581, 869, 1241, 1349, 1541, 1769, 1829, 1961, 2021, 7921

90

| 126, 178

91

| 267, 1027, 1387, 1891

92

| 132, 140

93

| 261, 445, 913, 1633, 2173

94

| 138, 154

95

| 623, 1079, 1343, 1679, 1943, 2183, 2279

96

| 144, 160, 176, 184, 188

97

| 1501, 2077, 2257, 9409

98

| 194

99

| 195, 279, 291, 979, 1411, 2059, 2419, 2491

100

|

101

| 485, 1157, 1577, 1817, 2117, 2201, 2501, 2537, 10201

102

| 202

103

| 303, 679, 2263, 2479, 2623, 10609

104

| 206

105

| 225, 309, 425, 505, 1513, 1909, 2773

106

| 170

107

| 515, 707, 1067, 1691, 2291, 2627, 2747, 2867, 11449

108

| 156, 162, 212, 214

109

| 321, 721, 1261, 2449, 2701, 2881, 11881

110

| 150, 182, 218

111

| 231, 327, 535, 1111, 2047, 2407, 2911, 3127

112

| 196, 208

113

| 545, 749, 1133, 1313, 1649, 2573, 2993, 3053, 3149, 3233, 12769

114

| 226

115

| 339, 475, 763, 1339, 1843, 2923, 3139

116

|

117

| 297, 333, 565, 1177, 1717, 2581, 3337

118

| 174, 190

119

| 539, 791, 1199, 1391, 1751, 1919, 2231, 2759, 3071, 3239, 3431, 3551, 3599

120

| 168, 200, 232, 236

121

| 1331, 1417, 1957, 3397

122

|

123

| 1243, 1819, 2323, 3403, 3763

124

| 244

125

| 625, 1469, 1853, 2033, 2369, 2813, 3293, 3569, 3713, 3869, 3953

126

| 186

127

| 255, 2071, 3007, 4087, 16129

128

| 192, 224, 248, 254, 256

129

| 273, 369, 381, 1921, 2461, 2929, 3649, 3901, 4189

130

|

131

| 635, 2147, 2507, 2987, 3131, 3827, 4187, 4307, 4331, 17161

132

| 180, 242, 262

133

| 393, 637, 889, 3193, 3589, 4453

134

|

135

| 351, 387, 575, 655, 2599, 3103, 4183, 4399

136

| 268

137

| 917, 1397, 3161, 3317, 3737, 3977, 4661, 4757, 18769

138

| 198, 274

139

| 411, 1651, 3379, 3811, 4171, 4819, 4891, 19321

140

| 204, 220, 278

141

| 285, 417, 685, 1441, 3277, 4141, 4717, 4897

142

| 230, 238

143

| 363, 695, 959, 1703, 2159, 3503, 3959, 4223, 4343, 4559, 5063, 5183

144

| 216, 272, 284

References

  • {{cite journal | zbl=0820.11003 | last1=Browkin | first1=J. | last2=Schinzel | first2=A. | title=On integers not of the form n-φ(n) | journal=Colloq. Math. | volume=68 | number=1 | pages=55–58 | year=1995 | doi=10.4064/cm-68-1-55-58 | doi-access=free }}
  • {{cite journal | zbl=0965.11003 | last1=Flammenkamp | first1=A. | last2=Luca | first2=F. | title=Infinite families of noncototients | journal=Colloq. Math. | volume=86 | number=1 | pages=37–41 | year=2000 | doi=10.4064/cm-86-1-37-41 | doi-access=free }}
  • {{cite book |last=Guy | first=Richard K. | author-link=Richard K. Guy | title=Unsolved problems in number theory | publisher=Springer-Verlag |edition=3rd | year=2004 |isbn=978-0-387-20860-2 | zbl=1058.11001 | pages=138–142}}