nonlinear eigenproblem

{{short description|Mathematical equation involving a matrix-valued function that is singular at the eigenvalue.}}

In mathematics, a nonlinear eigenproblem, sometimes nonlinear eigenvalue problem, is a generalization of the (ordinary) eigenvalue problem to equations that depend nonlinearly on the eigenvalue. Specifically, it refers to equations of the form

: M (\lambda) x = 0 ,

where x\neq0 is a vector, and M is a matrix-valued function of the number \lambda. The number \lambda is known as the (nonlinear) eigenvalue, the vector x as the (nonlinear) eigenvector, and (\lambda,x) as the eigenpair. The matrix M (\lambda) is singular at an eigenvalue \lambda.

Definition

In the discipline of numerical linear algebra the following definition is typically used.{{Cite journal|last1=Güttel|first1=Stefan|last2=Tisseur|first2=Françoise|author-link2=Françoise Tisseur|date=2017|title=The nonlinear eigenvalue problem|url=http://eprints.maths.manchester.ac.uk/2538/1/main.pdf|journal=Acta Numerica|language=en|volume=26|pages=1–94|doi=10.1017/S0962492917000034|s2cid=46749298|issn=0962-4929}}{{Cite journal|last=Ruhe|first=Axel|date=1973|title=Algorithms for the Nonlinear Eigenvalue Problem|url=https://epubs.siam.org/doi/10.1137/0710059|journal=SIAM Journal on Numerical Analysis|volume=10|issue=4|pages=674–689|doi=10.1137/0710059|issn=0036-1429|jstor=2156278|bibcode=1973SJNA...10..674R |url-access=subscription}}{{Cite journal|last1=Mehrmann|first1=Volker|author-link=Volker Mehrmann|last2=Voss|first2=Heinrich|date=2004|title=Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods|url=https://onlinelibrary.wiley.com/doi/abs/10.1002/gamm.201490007|journal=GAMM-Mitteilungen|language=en|volume=27|issue=2|pages=121–152|doi=10.1002/gamm.201490007|s2cid=14493456 |issn=1522-2608}}{{Cite book|last=Voss|first=Heinrich|url=https://www.routledge.com/Handbook-of-Linear-Algebra/Hogben/p/book/9781138199897|title=Handbook of Linear Algebra|publisher=Chapman and Hall/CRC|year=2014|isbn=9781466507289|editor-last=Hogben|editor-first=Leslie|editor-link=Leslie Hogben|edition=2|location=Boca Raton, FL|chapter=Nonlinear eigenvalue problems|chapter-url=https://www.mat.tuhh.de/forschung/rep/rep174.pdf}}

Let \Omega \subseteq \Complex, and let M : \Omega \rightarrow \Complex^{n\times n} be a function that maps scalars to matrices. A scalar \lambda \in \Complex is called an eigenvalue, and a nonzero vector x \in \Complex^n is called a right eigenvector if M (\lambda) x = 0. Moreover, a nonzero vector y \in \Complex^n is called a left eigenvector if y^H M (\lambda) = 0^H, where the superscript ^H denotes the Hermitian transpose. The definition of the eigenvalue is equivalent to \det(M (\lambda)) = 0, where \det() denotes the determinant.

The function M is usually required to be a holomorphic function of \lambda (in some domain \Omega).

In general, M (\lambda) could be a linear map, but most commonly it is a finite-dimensional, usually square, matrix.

Definition: The problem is said to be regular if there exists a z\in\Omega such that \det(M (z)) \neq 0. Otherwise it is said to be singular.

Definition: An eigenvalue \lambda is said to have algebraic multiplicity k if k is the smallest integer such that the kth derivative of \det(M (z)) with respect to z, in \lambda is nonzero. In formulas that \left.\frac{d^k \det(M (z))}{d z^k} \right|_{z=\lambda} \neq 0 but \left.\frac{d^\ell \det(M (z))}{d z^\ell} \right|_{z=\lambda} = 0 for \ell=0,1,2,\dots, k-1.

Definition: The geometric multiplicity of an eigenvalue \lambda is the dimension of the nullspace of M (\lambda).

Special cases

The following examples are special cases of the nonlinear eigenproblem.

Jordan chains

Definition: Let (\lambda_0,x_0) be an eigenpair. A tuple of vectors (x_0,x_1,\dots, x_{r-1})\in\Complex^n\times\Complex^n\times\dots\times\Complex^n is called a Jordan chain if\sum_{k=0}^{\ell} M^{(k)} (\lambda_0) x_{\ell - k} = 0 ,for \ell = 0,1,\dots , r-1, where M^{(k)}(\lambda_0) denotes the kth derivative of M with respect to \lambda and evaluated in \lambda=\lambda_0. The vectors x_0,x_1,\dots, x_{r-1} are called generalized eigenvectors, r is called the length of the Jordan chain, and the maximal length a Jordan chain starting with x_0 is called the rank of x_0.

Theorem: A tuple of vectors (x_0,x_1,\dots, x_{r-1})\in\Complex^n\times\Complex^n\times\dots\times\Complex^n is a Jordan chain if and only if the function M(\lambda) \chi_\ell (\lambda) has a root in \lambda=\lambda_0 and the root is of multiplicity at least \ell for \ell=0,1,\dots,r-1, where the vector valued function \chi_\ell (\lambda) is defined as\chi_\ell(\lambda) = \sum_{k=0}^\ell x_k (\lambda-\lambda_0)^k.

Mathematical software

  • The eigenvalue solver package SLEPc contains C-implementations of many numerical methods for nonlinear eigenvalue problems.{{cite journal |last1=Hernandez |first1=Vicente |last2=Roman |first2=Jose E. |last3=Vidal |first3=Vicente |title=SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems |journal=ACM Transactions on Mathematical Software |date=September 2005 |volume=31 |issue=3 |pages=351–362 |doi=10.1145/1089014.1089019|s2cid=14305707 }}
  • The [https://github.com/ftisseur/nlevp NLEVP collection of nonlinear eigenvalue problems] is a MATLAB package containing many nonlinear eigenvalue problems with various properties. {{cite journal |last1=Betcke |first1=Timo |last2=Higham |first2=Nicholas J. |last3=Mehrmann |first3=Volker |last4=Schröder |first4=Christian |last5=Tisseur |first5=Françoise |title=NLEVP: A Collection of Nonlinear Eigenvalue Problems |journal=ACM Transactions on Mathematical Software |date=February 2013 |volume=39 |issue=2 |pages=1–28 |doi=10.1145/2427023.2427024|s2cid=4271705 }}
  • The [http://www.feast-solver.org/ FEAST eigenvalue solver] is a software package for standard eigenvalue problems as well as nonlinear eigenvalue problems, designed from density-matrix representation in quantum mechanics combined with contour integration techniques.{{cite arXiv |last=Polizzi |first=Eric |eprint=2002.04807 |title=FEAST Eigenvalue Solver v4.0 User Guide|year=2020 |class=cs.MS }}
  • The MATLAB toolbox [https://bitbucket.org/roelvb/nleigs/ NLEIGS] contains an implementation of fully rational Krylov with a dynamically constructed rational interpolant.{{cite journal |last1=Güttel |first1=Stefan |last2=Van Beeumen |first2=Roel |last3=Meerbergen |first3=Karl |last4=Michiels |first4=Wim |title=NLEIGS: A Class of Fully Rational Krylov Methods for Nonlinear Eigenvalue Problems |journal=SIAM Journal on Scientific Computing |date=1 January 2014 |volume=36 |issue=6 |pages=A2842–A2864 |doi=10.1137/130935045|bibcode=2014SJSC...36A2842G }}
  • The MATLAB toolbox [https://bitbucket.org/roelvb/cork/ CORK] contains an implementation of the compact rational Krylov algorithm that exploits the Kronecker structure of the linearization pencils.{{cite journal |last1=Van Beeumen |first1=Roel |last2=Meerbergen |first2=Karl |last3=Michiels |first3=Wim |title=Compact rational Krylov methods for nonlinear eigenvalue problems |journal=SIAM Journal on Matrix Analysis and Applications |date=2015 |volume=36 |issue=2 |pages=820–838 |doi=10.1137/140976698|s2cid=18893623 |url=https://lirias.kuleuven.be/handle/123456789/490706 |url-access=subscription }}
  • The MATLAB toolbox [https://people.cs.kuleuven.be/~karl.meerbergen/files/aaa/autoCORK.zip AAA-EIGS] contains an implementation of CORK with rational approximation by set-valued AAA.{{cite journal |last1=Lietaert |first1=Pieter |last2=Meerbergen |first2=Karl |last3=Pérez |first3=Javier |last4=Vandereycken |first4=Bart |title=Automatic rational approximation and linearization of nonlinear eigenvalue problems |journal=IMA Journal of Numerical Analysis |date=13 April 2022 |volume=42 |issue=2 |pages=1087–1115 |doi=10.1093/imanum/draa098|arxiv=1801.08622 }}
  • The MATLAB toolbox [http://guettel.com/rktoolbox/ RKToolbox] (Rational Krylov Toolbox) contains implementations of the rational Krylov method for nonlinear eigenvalue problems as well as features for rational approximation. {{cite web |last1=Berljafa |first1=Mario |last2=Steven |first2=Elsworth |last3=Güttel |first3=Stefan |title=An overview of the example collection |url=http://guettel.com/rktoolbox/examples/html/index.html#5 |website=index.m |access-date=31 May 2022 |date=15 July 2020}}
  • The Julia package [https://nep-pack.github.io/NonlinearEigenproblems.jl/ NEP-PACK] contains many implementations of various numerical methods for nonlinear eigenvalue problems, as well as many benchmark problems.{{Cite arXiv|last1=Jarlebring |first1=Elias |last2=Bennedich |first2=Max |last3=Mele |first3=Giampaolo |last4=Ringh |first4=Emil |last5=Upadhyaya |first5=Parikshit |title=NEP-PACK: A Julia package for nonlinear eigenproblems |date=23 November 2018|class=math.NA |eprint=1811.09592 }}
  • The review paper of Güttel & Tisseur{{Cite journal|last1=Güttel|first1=Stefan|last2=Tisseur|first2=Françoise|author-link2=Françoise Tisseur|date=2017|title=The nonlinear eigenvalue problem|url=http://eprints.maths.manchester.ac.uk/2538/1/main.pdf|journal=Acta Numerica|language=en|volume=26|pages=1–94|doi=10.1017/S0962492917000034|s2cid=46749298|issn=0962-4929}} contains MATLAB code snippets implementing basic Newton-type methods and contour integration methods for nonlinear eigenproblems.

Eigenvector nonlinearity

Eigenvector nonlinearities is a related, but different, form of nonlinearity that is sometimes studied. In this case the function M maps vectors to matrices, or sometimes hermitian matrices to hermitian matrices.{{Cite journal|last1=Jarlebring|first1=Elias|last2=Kvaal|first2=Simen|last3=Michiels|first3=Wim|date=2014-01-01|title=An Inverse Iteration Method for Eigenvalue Problems with Eigenvector Nonlinearities|url=https://epubs.siam.org/doi/10.1137/130910014|journal=SIAM Journal on Scientific Computing|volume=36|issue=4|pages=A1978–A2001|doi=10.1137/130910014|issn=1064-8275|arxiv=1212.0417|bibcode=2014SJSC...36A1978J |s2cid=16959079}}{{Cite journal|last1=Upadhyaya|first1=Parikshit|last2=Jarlebring|first2=Elias|last3=Rubensson|first3=Emanuel H.|date=2021|title=A density matrix approach to the convergence of the self-consistent field iteration|journal=Numerical Algebra, Control & Optimization|volume=11|issue=1|pages=99|doi=10.3934/naco.2020018|issn=2155-3297|doi-access=free|arxiv=1809.02183}}

References

Further reading

  • Françoise Tisseur and Karl Meerbergen, "The quadratic eigenvalue problem," SIAM Review 43 (2), 235–286 (2001) (link).
  • Gene H. Golub and Henk A. van der Vorst, "Eigenvalue computation in the 20th century," Journal of Computational and Applied Mathematics 123, 35–65 (2000).
  • Philippe Guillaume, "Nonlinear eigenproblems," SIAM Journal on Matrix Analysis and Applications 20 (3), 575–595 (1999) ([https://dx.doi.org/10.1137/S0895479897324172 link]).
  • Cedric Effenberger, "Robust solution methods fornonlinear eigenvalue problems", PhD thesis EPFL (2013) ([http://sma.epfl.ch/~anchpcommon/students/effenberger.pdf link])
  • Roel Van Beeumen, "Rational Krylov methods fornonlinear eigenvalue problems", PhD thesis KU Leuven (2015) ([https://lirias.kuleuven.be/bitstream/123456789/487915/1/PhD%20thesis%20Roel%20Van%20Beeumen.pdf link])

Category:Linear algebra