normal-Wishart distribution

{{Probability distribution |

name =Normal-Wishart|

type =density|

pdf_image =|

cdf_image =|

notation = (\boldsymbol\mu,\boldsymbol\Lambda) \sim \mathrm{NW}(\boldsymbol\mu_0,\lambda,\mathbf{W},\nu)|

parameters =\boldsymbol\mu_0\in\mathbb{R}^D\, location (vector of real)
\lambda > 0\, (real)
\mathbf{W} \in\mathbb{R}^{D\times D} scale matrix (pos. def.)
\nu > D-1\, (real)|

support =\boldsymbol\mu\in\mathbb{R}^D ; \boldsymbol\Lambda \in\mathbb{R}^{D\times D} covariance matrix (pos. def.)|

pdf =f(\boldsymbol\mu,\boldsymbol\Lambda|\boldsymbol\mu_0,\lambda,\mathbf{W},\nu) = \mathcal{N}(\boldsymbol\mu|\boldsymbol\mu_0,(\lambda\boldsymbol\Lambda)^{-1})\ \mathcal{W}(\boldsymbol\Lambda|\mathbf{W},\nu)|

cdf =|

mean =|

median =|

mode =|

variance =|

skewness =|

kurtosis =|

entropy =|

mgf =|

char =|

}}

In probability theory and statistics, the normal-Wishart distribution (or Gaussian-Wishart distribution) is a multivariate four-parameter family of continuous probability distributions. It is the conjugate prior of a multivariate normal distribution with unknown mean and precision matrix (the inverse of the covariance matrix).Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. Springer Science+Business Media. Page 690.

Definition

Suppose

: \boldsymbol\mu|\boldsymbol\mu_0,\lambda,\boldsymbol\Lambda \sim \mathcal{N}(\boldsymbol\mu_0,(\lambda\boldsymbol\Lambda)^{-1})

has a multivariate normal distribution with mean \boldsymbol\mu_0 and covariance matrix (\lambda\boldsymbol\Lambda)^{-1}, where

:\boldsymbol\Lambda|\mathbf{W},\nu \sim \mathcal{W}(\boldsymbol\Lambda|\mathbf{W},\nu)

has a Wishart distribution. Then (\boldsymbol\mu,\boldsymbol\Lambda)

has a normal-Wishart distribution, denoted as

: (\boldsymbol\mu,\boldsymbol\Lambda) \sim \mathrm{NW}(\boldsymbol\mu_0,\lambda,\mathbf{W},\nu) .

Characterization

=Probability density function=

: f(\boldsymbol\mu,\boldsymbol\Lambda|\boldsymbol\mu_0,\lambda,\mathbf{W},\nu) = \mathcal{N}(\boldsymbol\mu|\boldsymbol\mu_0,(\lambda\boldsymbol\Lambda)^{-1})\ \mathcal{W}(\boldsymbol\Lambda|\mathbf{W},\nu)

Properties

=Scaling=

=Marginal distributions=

By construction, the marginal distribution over \boldsymbol\Lambda is a Wishart distribution, and the conditional distribution over \boldsymbol\mu given \boldsymbol\Lambda is a multivariate normal distribution. The marginal distribution over \boldsymbol\mu is a multivariate t-distribution.

Posterior distribution of the parameters

After making n observations \boldsymbol{x}_1, \dots, \boldsymbol{x}_n, the posterior distribution of the parameters is

:(\boldsymbol\mu,\boldsymbol\Lambda) \sim \mathrm{NW}(\boldsymbol\mu_n,\lambda_n,\mathbf{W}_n,\nu_n),

where

:\lambda_n = \lambda + n,

:\boldsymbol\mu_n = \frac{\lambda \boldsymbol\mu_0 + n\boldsymbol{\bar{x}}}{\lambda + n},

:\nu_n = \nu + n,

:\mathbf{W}_n^{-1} = \mathbf{W}^{-1} + \sum_{i=1}^n (\boldsymbol{x}_i - \boldsymbol{\bar{x}})(\boldsymbol{x}_i - \boldsymbol{\bar{x}})^T + \frac{n \lambda}{n + \lambda} (\boldsymbol{\bar{x}} - \boldsymbol\mu_0)(\boldsymbol{\bar{x}} - \boldsymbol\mu_0)^T.Cross Validated, https://stats.stackexchange.com/q/324925

Generating normal-Wishart random variates

Generation of random variates is straightforward:

  1. Sample \boldsymbol\Lambda from a Wishart distribution with parameters \mathbf{W} and \nu
  2. Sample \boldsymbol\mu from a multivariate normal distribution with mean \boldsymbol\mu_0 and variance (\lambda\boldsymbol\Lambda)^{-1}

Related distributions

Notes

{{reflist}}

References

  • Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. Springer Science+Business Media.

{{ProbDistributions|multivariate}}

{{DEFAULTSORT:Normal-Wishart Distribution}}

Category:Multivariate continuous distributions

Category:Conjugate prior distributions

Category:Normal distribution