oblique lattice

{{Short description|2-dimensional inclined lattice}}

class=wikitable align=right

|150px

|120px

|80px

Oblique lattice

!Wallpaper group p2

!Unit cell

The oblique lattice is one of the five two-dimensional Bravais lattice types.{{Cite web|last=Rana|first=Farhan|title=Lattices in 1D, 2D, and 3D|url=https://courses.cit.cornell.edu/ece407/Lectures/handout4.pdf|url-status=live|archive-url=https://web.archive.org/web/20201218214110/https://courses.cit.cornell.edu/ece407/Lectures/handout4.pdf|archive-date=2020-12-18|website=Cornell University}} The symmetry category of the lattice is wallpaper group p2. The primitive translation vectors of the oblique lattice form an angle other than 90° and are of unequal lengths.

{{clear}}

Crystal classes

The oblique lattice class names, Schönflies notation, Hermann-Mauguin notation, orbifold notation, Coxeter notation, and wallpaper groups are listed in the table below.

class="wikitable"
colspan=4|Geometric class, point group

! rowspan=2|Arithmetic
class

! rowspan=2 colspan=2|Wallpaper groups

align=center

!Schön.

IntlOrb.Cox.
align=center

| C1

1(1)[ ]+

| None

| p1
(1)

align=center

| C2

2(22)[2]+

| None

| p2
(2222)

References

{{reflist}}

{{Crystal systems}}

Category:Lattice points

Category:Crystal systems

{{Crystallography-stub}}