oblique lattice
{{Short description|2-dimensional inclined lattice}}
class=wikitable align=right
|80px |
Oblique lattice
!Wallpaper group p2 !Unit cell |
---|
The oblique lattice is one of the five two-dimensional Bravais lattice types.{{Cite web|last=Rana|first=Farhan|title=Lattices in 1D, 2D, and 3D|url=https://courses.cit.cornell.edu/ece407/Lectures/handout4.pdf|url-status=live|archive-url=https://web.archive.org/web/20201218214110/https://courses.cit.cornell.edu/ece407/Lectures/handout4.pdf|archive-date=2020-12-18|website=Cornell University}} The symmetry category of the lattice is wallpaper group p2. The primitive translation vectors of the oblique lattice form an angle other than 90° and are of unequal lengths.
{{clear}}
Crystal classes
The oblique lattice class names, Schönflies notation, Hermann-Mauguin notation, orbifold notation, Coxeter notation, and wallpaper groups are listed in the table below.
class="wikitable" | |||
colspan=4|Geometric class, point group
! rowspan=2|Arithmetic ! rowspan=2 colspan=2|Wallpaper groups | |||
---|---|---|---|
align=center | Intl | Orb. | Cox. |
align=center
| C1 | 1 | (1) | [ ]+
| None | p1 |
align=center
| C2 | 2 | (22) | [2]+
| None | p2 |
References
{{reflist}}
{{Crystal systems}}
{{Crystallography-stub}}