oleylamine
{{chembox|ImageFile=oleylamine.svg|ImageSize=250px|PIN=(9Z)-Octadec-9-en-1-amine|OtherNames=9-Octadecenylamine
1-Amino-9-octadecene, (9Z)-Octadecene|Section1={{Chembox Identifiers
| ChemSpiderID = 4512354
| UNII = ZDQ1JWQ8DT
| CASNo = 112-90-3
| PubChem = 5356789
}}|Section2={{Chembox Properties
| C=18 | H=37 | N=1
| MolarMass = 267.493 g/mol
| Appearance = colourless oil, yellowish when impure
| Density = 0.813 g/cm3
| MeltingPtC = 21
| BoilingPtC = 364
| BoilingPt_notes =
| Solubility = Insoluble
}}|Section3={{Chembox Hazards
| MainHazards =
| FlashPtC = 154
| AutoignitionPtC =
| NFPA-H = 3
| NFPA-F = 0
| NFPA-R = 0
| NFPA-S =
}}}}
Oleylamine is an organic compound with a molecular formula C18H35NH2.{{Cite web|url=https://pubchem.ncbi.nlm.nih.gov/compound/5356789|title=Oleylamine|last=Pubchem|website=pubchem.ncbi.nlm.nih.gov|language=en|access-date=2019-03-10}} It is an unsaturated fatty amine related to the fatty acid oleic acid. The pure compound is a clear and colorless liquid. Commercially available oleylamine reagents{{Cite web|url=https://www.sigmaaldrich.com/catalog/product/aldrich/o7805|title=Oleylamine, technical grade 70% (Sigma-Aldrich)|access-date=March 10, 2019}}{{Cite web|url=https://www.sigmaaldrich.com/catalog/product/aldrich/htoa100|title=Oleylamine, ≥98% primary amine (Sigma-Aldrich)}}{{Cite web|url=https://www.strem.com/catalog/v/07-1668/44/nanomaterials_112-90-3|title=Oleylamine, min. 95% (Strem Chemicals)|access-date=March 10, 2019}}{{Cite web|url=https://www.strem.com/catalog/v/07-1665/44/nanomaterials_112-90-3|title=Oleylamine, min. 70% (Strem Chemicals)|access-date=March 10, 2019}}{{Cite web|url=https://www.acros.com/|title=Oleylamine, approximate C18-content 80-90% (Acros Organics, catalog number 12954)|access-date=March 10, 2019}} vary in colour from clear and colorless to varying degrees of yellow due to impurities. The major impurities include trans isomer (elaidylamine) and other long chain amines with varying chain lengths.{{Cite journal|last1=Baranov|first1=Dmitry|last2=Lynch|first2=Michael J.|last3=Curtis|first3=Anna C.|last4=Carollo|first4=Alexa R.|last5=Douglass|first5=Callum R.|last6=Mateo-Tejada|first6=Alina M.|last7=Jonas|first7=David M.|date=2019-02-26|title=Purification of Oleylamine for Materials Synthesis and Spectroscopic Diagnostics for trans Isomers|journal=Chemistry of Materials|language=en|volume=31|issue=4|pages=1223–1230|doi=10.1021/acs.chemmater.8b04198|issn=0897-4756|doi-access=free}} Minor impurities include oxygen-containing substances such as amides and nitroalkanes.
Chemical reactions
Oleylamine reacts with carboxylic acid to form its carboxylate salt through an exothermic reaction.{{cite journal|last1=Yin|first1=Xi|last2=Wu|first2=Jianbo|last3=Li|first3=Panpan|last4=Shi|first4=Miao|last5=Yang|first5=Hong|title=Self-Heating Approach to the Fast Production of Uniform Metal Nanostructures|journal=ChemNanoMat|date=January 2016|volume=2|issue=1|pages=37–41|doi=10.1002/cnma.201500123}}{{Cite journal|last1=Almeida|first1=Guilherme|last2=Goldoni|first2=Luca|last3=Akkerman|first3=Quinten|last4=Dang|first4=Zhiya|last5=Khan|first5=Ali Hossain|last6=Marras|first6=Sergio|last7=Moreels|first7=Iwan|last8=Manna|first8=Liberato|date=2018-02-27|title=Role of Acid–Base Equilibria in the Size, Shape, and Phase Control of Cesium Lead Bromide Nanocrystals|journal=ACS Nano|language=en|volume=12|issue=2|pages=1704–1711|doi=10.1021/acsnano.7b08357|issn=1936-0851|pmc=5830690|pmid=29381326}} Its carboxylate salt can further condensate into amides through the loss of one water molecule. In the presence of acetic acid, oleylamin forms with DNA insoluble complexes with the radii of the particles equal 60–65 nm.{{Cite journal |last1=Zaborova |first1=O. V. |last2=Voinova |first2=A. D. |last3=Shmykov |first3=B. D. |last4=Sergeyev |first4=V. G. |title=Solid Lipid Nanoparticles for the Nucleic Acid Encapsulation |url=https://link.springer.com/10.1134/S2079978021030055 |journal=Reviews and Advances in Chemistry |year=2021 |language=en |volume=11 |issue=3–4 |pages=178–188 |doi=10.1134/S2079978021030055 |s2cid=246946068 |issn=2634-8276|url-access=subscription }}
Uses
Commercially, it is mainly used as a surfactant or precursor to surfactants.Karsten Eller, Erhard Henkes, Roland Rossbacher, Hartmut Höke "Amines, Aliphatic" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005. {{doi|10.1002/14356007.a02_001}}
It has also been used in the laboratory to synthesise nanoparticles.{{Cite journal|last1=Mourdikoudis|first1=Stefanos|last2=Liz-Marzán|first2=Luis M.|date=2013-05-14|title=Oleylamine in Nanoparticle Synthesis|journal=Chemistry of Materials|volume=25|issue=9|pages=1465–1476|doi=10.1021/cm4000476|issn=0897-4756}}{{cite journal|last1=Yin|first1=Xi|last2=Shi|first2=Miao|last3=Wu|first3=Jianbo|last4=Pan|first4=Yung-Tin|last5=Gray|first5=Danielle L.|last6=Bertke|first6=Jeffery A.|last7=Yang|first7=Hong|title=Quantitative Analysis of Different Formation Modes of Pt Nanocrystals Controlled by Ligand Chemistry|journal=Nano Letters|volume=17|issue=10|pages=6146–6150|date=5 September 2017|doi=10.1021/acs.nanolett.7b02751|pmid=28873317|doi-access=free}} It can function both as a solvent for the reaction mixture and as a coordinating agent to stabilize the surface of the particles. It can also coordinate with metal ions, change the form of metal precursors and affect the formation kinetics of nanoparticles during the synthesis. As a ligand bound to metal nanoparticle surfaces, it exhibits an apparent length of 1.8 - 2.2 nm.{{Cite journal|doi=10.1038/s41467-017-01735-6|title=Effect of Oleylamine on the Surface Chemistry, Morphology, Electronic Structure, and Magnetic Properties of Cobalt Ferrite Nanoparticles|year=2022|last1=Ansari|first1=S. M.|last2=Sinha|first2=B. B.|last3=Sen|first3=D.|last4=Sastry|first4=P. U.|last5=Kolekar|first5=Y. D.|last6=Ramana|first6=C. V.|journal=Nanomaterials|volume=12|number=17|pages=1-19|url=https://doi.org/10.3390/nano12173015}} This reported value varies between studies and the degree of interdigitation between overlapping oleylamine layers, particularly those of neighboring nanoparticles.
Safety
Oleylamine has an LD50 (Intraperitoneal) of 888 mg/kg in mice, however, note that it is listed as a level 3 health hazard on the NFPA diamond, so it should be handled with caution.
Characterization
Oleylamine can be characterized using MS, HNMR, CNMR, IR, and Raman. Each technique shows distinct peaks in various regions.{{cite web|title=Oleylamine(112-90-3) 1H NMR|url=https://www.chemicalbook.com/SpectrumEN_112-90-3_1HNMR.htm}}