option type

{{Short description|Encapsulation of an optional value in programming or type theory}}

{{for|families of option contracts in finance|Option style}}

{{multiple issues|section=|

{{More citations needed|date=July 2019}}

{{Original research|date=July 2019}}

}}

In programming languages (especially functional programming languages) and type theory, an option type or maybe type is a polymorphic type that represents encapsulation of an optional value; e.g., it is used as the return type of functions which may or may not return a meaningful value when they are applied. It consists of a constructor which either is empty (often named None or Nothing), or which encapsulates the original data type A (often written Just A or Some A).

A distinct, but related concept outside of functional programming, which is popular in object-oriented programming, is called nullable types (often expressed as A?). The core difference between option types and nullable types is that option types support nesting (e.g. Maybe (Maybe String)Maybe String), while nullable types do not (e.g. String?? = String?).

Theoretical aspects

{{multiple issues|section=yes|{{Importance section|section|date=July 2019}}

{{Original research|section|date=August 2019}}}}

In type theory, it may be written as: A^{?} = A + 1. This expresses the fact that for a given set of values in A, an option type adds exactly one additional value (the empty value) to the set of valid values for A. This is reflected in programming by the fact that in languages having tagged unions, option types can be expressed as the tagged union of the encapsulated type plus a unit type.{{cite web|url=https://bartoszmilewski.com/2015/01/13/simple-algebraic-data-types/|title=Simple Algebraic Data Types|last=Milewski|first=Bartosz|date=2015-01-13|website=Bartosz Milewski's Programming Cafe|at=Sum types. "We could have encoded Maybe as: data Maybe a = Either () a"|language=en|archive-url=https://web.archive.org/web/20190818084741/https://bartoszmilewski.com/2015/01/13/simple-algebraic-data-types/|archive-date=2019-08-18|url-status=live|access-date=2019-08-18}}

In the Curry–Howard correspondence, option types are related to the annihilation law for ∨: x∨1=1.{{How|date=August 2019|title=It is unclear how this is the case, and there are no links to external references that explain this.}}

An option type can also be seen as a collection containing either one or zero elements.{{Original research inline|date=July 2019}}

The option type is also a monad where:{{cite web|url=http://www.learnyouahaskell.com/a-fistful-of-monads|title=A Fistful of Monads - Learn You a Haskell for Great Good!|website=www.learnyouahaskell.com|access-date=2019-08-18}}

return = Just -- Wraps the value into a maybe

Nothing >>= f = Nothing -- Fails if the previous monad fails

(Just x) >>= f = f x -- Succeeds when both monads succeed

The monadic nature of the option type is useful for efficiently tracking failure and errors.{{cite web|url=https://www.youtube.com/watch?v=t1e8gqXLbsU |archive-url=https://ghostarchive.org/varchive/youtube/20211220/t1e8gqXLbsU |archive-date=2021-12-20 |url-status=live|title=What is a Monad?|last=Hutton|first=Graham|date=Nov 25, 2017|website=Computerphile Youtube|access-date=Aug 18, 2019}}{{cbignore}}

Examples

= Ada =

Ada does not implement option-types directly, however it provides discriminated types which can be used to parameterize a record. To implement a Option type, a Boolean type is used as the discriminant; the following example provides a generic to create an option type from any non-limited constrained type:

generic

-- Any constrained & non-limited type.

type Element_Type is private;

package Optional_Type is

-- When the discriminant, Has_Element, is true there is an element field,

-- when it is false, there are no fields (hence the null keyword).

type Optional (Has_Element : Boolean) is record

case Has_Element is

when False => Null;

when True => Element : Element_Type;

end case;

end record;

end Optional_Type;

Example usage:

package Optional_Integers is new Optional_Type

(Element_Type => Integer);

Foo : Optional_Integers.Optional :=

(Has_Element => True, Element => 5);

Bar : Optional_Integers.Optional :=

(Has_Element => False);

= Agda =

{{Expand section|with=example usage|date=July 2022}}

{{Further|Agda (programming language)}}

In Agda, the option type is named {{code|2=agda|Maybe}} with variants {{code|2=agda|nothing}} and {{code|2=agda|just a}}.

= ATS =

{{Further|ATS (programming language)}}

In ATS, the option type is defined as

datatype option_t0ype_bool_type (a: t@ype+, bool) =

| Some(a, true) of a

| None(a, false)

stadef option = option_t0ype_bool_type

typedef Option(a: t@ype) = [b:bool] option(a, b)

  1. include "share/atspre_staload.hats"

fn show_value (opt: Option int): string =

case+ opt of

| None() => "No value"

| Some(s) => tostring_int s

implement main0 (): void = let

val full = Some 42

and empty = None

in

println!("show_value full → ", show_value full);

println!("show_value empty → ", show_value empty);

end

show_value full → 42

show_value empty → No value

= C++ =

Since C++17, the option type is defined in the standard library as {{code|2=C++|1=template std::optional }}.

std::optional divide(int x, int y) {

if(y != 0.0)

return x / y;

return {};

}

= Coq =

{{Expand section|with=example usage|date=July 2022}}

{{Further|Coq (software)}}

In Coq, the option type is defined as {{code|2=coq|1=Inductive option (A:Type) : Type := {{!}} Some : A -> option A {{!}} None : option A. }}.

= Elm =

{{Expand section|with=example usage|date=July 2022}}

{{Further|Elm (programming language)}}

In Elm, the option type is defined as {{code|2=elm|1=type Maybe a = Just a {{!}} Nothing}}.{{cite web |title=Maybe · An Introduction to Elm |url=https://guide.elm-lang.org/error_handling/maybe.html |website=guide.elm-lang.org}}

= F# =

{{Further|F Sharp (programming language)}}

In F#, the option type is defined as {{code|2=fsharp|1=type 'a option = None {{!}} Some of 'a}}.{{Cite web |title=Options |url=https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/options |access-date=2024-10-08 |website=fsharp.org}}

let showValue =

Option.fold (fun _ x -> sprintf "The value is: %d" x) "No value"

let full = Some 42

let empty = None

showValue full |> printfn "showValue full -> %s"

showValue empty |> printfn "showValue empty -> %s"

showValue full -> The value is: 42

showValue empty -> No value

= Haskell =

{{Further|Haskell (programming language)}}

In Haskell, the option type is defined as {{code|2=haskell|1=data Maybe a = Nothing {{!}} Just a}}.{{Cite web |title=6 Predefined Types and Classes |url=https://www.haskell.org/onlinereport/haskell2010/haskellch6.html#x13-1250006.1.8 |access-date=2022-06-15 |website=www.haskell.org}}

showValue :: Maybe Int -> String

showValue = foldl (\_ x -> "The value is: " ++ show x) "No value"

main :: IO ()

main = do

let full = Just 42

let empty = Nothing

putStrLn $ "showValue full -> " ++ showValue full

putStrLn $ "showValue empty -> " ++ showValue empty

showValue full -> The value is: 42

showValue empty -> No value

= Idris =

{{Further|Idris (programming language)}}

In Idris, the option type is defined as {{code|2=idris|1=data Maybe a = Nothing {{!}} Just a}}.

showValue : Maybe Int -> String

showValue = foldl (\_, x => "The value is " ++ show x) "No value"

main : IO ()

main = do

let full = Just 42

let empty = Nothing

putStrLn $ "showValue full -> " ++ showValue full

putStrLn $ "showValue empty -> " ++ showValue empty

showValue full -> The value is: 42

showValue empty -> No value

= Java =

{{Further|Java (programming language)}}

In Java, the option type is defined the standard library by the {{code|2=java|1=java.util.Optional}} class.

import java.util.Optional;

class Option {

static String showValue(Optional opt) {

return opt.map(x -> String.format("The value is: %d", x)).orElse("No value");

}

public static void main(String[] args) {

Optional full = Optional.of(42);

Optional empty = Optional.empty();

System.out.printf("showValue(full) -> %s\n", showValue(full));

System.out.printf("showValue(empty) -> %s\n", showValue(empty));

}

}

showValue full -> The value is: 42

showValue empty -> No value

= Nim =

{{Expand section|with=the definition|date=July 2022}}

{{Further|Nim (programming language)}}

import std/options

proc showValue(opt: Option[int]): string =

opt.map(proc (x: int): string = "The value is: " & $x).get("No value")

let

full = some(42)

empty = none(int)

echo "showValue(full) -> ", showValue(full)

echo "showValue(empty) -> ", showValue(empty)

showValue(full) -> The Value is: 42

showValue(empty) -> No value

= OCaml =

{{Further|OCaml}}

In OCaml, the option type is defined as {{code|2=ocaml|1=type 'a option = None {{!}} Some of 'a}}.{{Cite web |title=OCaml library : Option |url=https://v2.ocaml.org/releases/4.13/api/Option.html#TYPEt |access-date=2022-06-15 |website=v2.ocaml.org}}

let show_value =

Option.fold ~none:"No value" ~some:(fun x -> "The value is: " ^ string_of_int x)

let () =

let full = Some 42 in

let empty = None in

print_endline ("show_value full -> " ^ show_value full);

print_endline ("show_value empty -> " ^ show_value empty)

show_value full -> The value is: 42

show_value empty -> No value

= Rust =

{{Further|Rust (programming language)}}

In Rust, the option type is defined as {{code|2=rust|enum Option { None, Some(T) } }}.{{cite web |url=https://doc.rust-lang.org/core/option/enum.Option.html |title=Option in core::option - Rust |date=2022-05-18 |access-date=2022-06-15 |website=doc.rust-lang.org}}

fn show_value(opt: Option) -> String {

opt.map_or("No value".to_owned(), |x| format!("The value is: {}", x))

}

fn main() {

let full = Some(42);

let empty = None;

println!("show_value(full) -> {}", show_value(full));

println!("show_value(empty) -> {}", show_value(empty));

}

show_value(full) -> The value is: 42

show_value(empty) -> No value

= Scala =

{{Further|Scala (programming language)}}

In Scala, the option type is defined as {{code|2=scala|1=sealed abstract class Option[+A]}}, a type extended by {{code|2=scala|1=final case class Some[+A](value: A)}} and {{code|2=scala|1=case object None}}.

object Main:

def showValue(opt: Option[Int]): String =

opt.fold("No value")(x => s"The value is: $x")

def main(args: Array[String]): Unit =

val full = Some(42)

val empty = None

println(s"showValue(full) -> ${showValue(full)}")

println(s"showValue(empty) -> ${showValue(empty)}")

showValue(full) -> The value is: 42

showValue(empty) -> No value

= Standard ML =

{{Expand section|with=example usage|date=July 2022}}

{{Further|Standard ML}}

In Standard ML, the option type is defined as {{code|2=sml|1=datatype 'a option = NONE {{!}} SOME of 'a}}.

= Swift =

{{Further|Swift (programming language)}}

In Swift, the option type is defined as {{code|2=swift|enum Optional { case none, some(T) } }} but is generally written as {{code|2=swift|T?}}.{{cite web|title=Apple Developer Documentation|url=https://developer.apple.com/documentation/swift/optional|access-date=2020-09-06|website=developer.apple.com}}

func showValue(_ opt: Int?) -> String {

return opt.map { "The value is: \($0)" } ?? "No value"

}

let full = 42

let empty: Int? = nil

print("showValue(full) -> \(showValue(full))")

print("showValue(empty) -> \(showValue(empty))")

showValue(full) -> The value is: 42

showValue(empty) -> No value

= Zig =

{{Further|Zig (programming language)}}

In Zig, add ? before the type name like ?i32 to make it an optional type.

Payload n can be captured in an if or while statement, such as {{code|2=zig|if (opt) {{!}}n{{!}} { ... } else { ... } }}, and an else clause is evaluated if it is null.

const std = @import("std");

fn showValue(allocator: std.mem.Allocator, opt: ?i32) ![]u8 {

return if (opt) |n|

std.fmt.allocPrint(allocator, "The value is: {}", .{n})

else

allocator.dupe(u8, "No value");

}

pub fn main() !void {

// Set up an allocator, and warn if we forget to free any memory.

var gpa: std.heap.DebugAllocator(.{}) = .init;

defer std.debug.assert(gpa.deinit() == .ok);

const allocator = gpa.allocator();

// Prepare the standard output stream.

const stdout = std.io.getStdOut().writer();

// Perform our example.

const full = 42;

const empty = null;

const full_msg = try showValue(allocator, full);

defer allocator.free(full_msg);

try stdout.print("showValue(allocator, full) -> {s}\n", .{full_msg});

const empty_msg = try showValue(allocator, empty);

defer allocator.free(empty_msg);

try stdout.print("showValue(allocator, empty) -> {s}\n", .{empty_msg});

}

showValue(allocator, full) -> The value is: 42

showValue(allocator, empty) -> No value

See also

References