order-4 apeirogonal tiling
{{Short description|Regular tiling in geometry}}
{{technical|date=July 2013}}
{{Uniform hyperbolic tiles db|Reg hyperbolic tiling stat table|Ui4_0}}
In geometry, the order-4 apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,4}.
Symmetry
This tiling represents the mirror lines of *2∞ symmetry. Its dual tiling represents the fundamental domains of orbifold notation *∞∞∞∞ symmetry, a square domain with four ideal vertices.
: 120px
Uniform colorings
Like the Euclidean square tiling there are 9 uniform colorings for this tiling, with 3 uniform colorings generated by triangle reflective domains. A fourth can be constructed from an infinite square symmetry (*∞∞∞∞) with 4 colors around a vertex. The checker board, r{∞,∞}, coloring defines the fundamental domains of [(∞,4,4)], (*∞44) symmetry, usually shown as black and white domains of reflective orientations.
class=wikitable
!1 color !2 color !colspan=2|3 and 2 colors !colspan=3|4, 3 and 2 colors |
align=center
|[∞,4], (*∞42) |[∞,∞], (*∞∞2) |colspan=2|[(∞,∞,∞)], (*∞∞∞) |colspan=3|(*∞∞∞∞) |
align=center
|{∞,4} |r{∞,∞} |colspan=2|t0,2(∞,∞,∞) |colspan=3|t0,1,2,3(∞,∞,∞,∞) |
align=center
|80px |80px |80px |80px |80px |80px |80px |
align=center
|{{CDD|node_1|infin|node|4|node}} |{{CDD|node_1|split1-ii|nodes}} = {{CDD|node_1|infin|node|4|node_h0}} |colspan=2|{{CDD|labelinfin|branch_11|split2-ii|node}} = {{CDD|node_h0|infin|node_1|infin|node}} |colspan=3|{{CDD|labelinfin|branch_11|iaib-cross|branch_11|labelinfin}} = {{CDD|labelinfin|branch_11|split2-ii|node|labelh}} = {{CDD|node_h0|infin|node_1|infin|node_h0}} |
Related polyhedra and tiling
This tiling is also topologically related as a part of sequence of regular polyhedra and tilings with four faces per vertex, starting with the octahedron, with Schläfli symbol {n,4}, and Coxeter diagram {{CDD|node_1|n|node|4|node}}, with n progressing to infinity.
{{Order-4 regular tilings}}
{{Order i-4 tiling table}}
{{Order i-i tiling table}}
{{Order i-i-i tiling table}}
See also
{{Commons category|Order-4 apeirogonal tiling}}
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, {{isbn|978-1-56881-220-5}} (Chapter 19, The Hyperbolic Archimedean Tessellations)
- {{Cite book|title=The Beauty of Geometry: Twelve Essays|year=1999|publisher=Dover Publications|lccn=99035678|isbn=0-486-40919-8|chapter=Chapter 10: Regular honeycombs in hyperbolic space}}
External links
- {{MathWorld | urlname= HyperbolicTiling | title = Hyperbolic tiling}}
- {{MathWorld | urlname=PoincareHyperbolicDisk | title = Poincaré hyperbolic disk }}
- [http://bork.hampshire.edu/~bernie/hyper/ Hyperbolic and Spherical Tiling Gallery]
- [http://geometrygames.org/KaleidoTile/index.html KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings]
- [http://www.plunk.org/~hatch/HyperbolicTesselations Hyperbolic Planar Tessellations, Don Hatch]
{{Tessellation}}