order-4 octahedral honeycomb
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Order-4 octahedral honeycomb | |
bgcolor=#ffffff align=center colspan=2|320px Perspective projection view within Poincaré disk model | |
bgcolor=#e7dcc3|Type | Hyperbolic regular honeycomb Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbols | {3,4,4} {3,41,1} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|node_1|3|node|4|node|4|node}} {{CDD|node_1|3|node|split1-44|nodes}} ↔ {{CDD|node_1|3|node|4|node|4|node_h0}} {{CDD|node_1|split1|nodes|2a2b-cross|nodes}} ↔ {{CDD|node_1|3|node|4|node_h0|4|node}} {{CDD|branchu|split2|node_1|split1|branchu}} ↔ {{CDD|node_1|3|node|4|node_g|4sg|node_g}} |
bgcolor=#e7dcc3|Cells | {3,4} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} |
bgcolor=#e7dcc3|Edge figure | square {4} |
bgcolor=#e7dcc3|Vertex figure | square tiling, {4,4} 40px 40px 40px 40px |
bgcolor=#e7dcc3|Dual | Square tiling honeycomb, {4,4,3} |
bgcolor=#e7dcc3|Coxeter groups | , [3,4,4] , [3,41,1] |
bgcolor=#e7dcc3|Properties | Regular |
The order-4 octahedral honeycomb is a regular paracompact honeycomb in hyperbolic 3-space. It is paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. Given by Schläfli symbol {3,4,4}, it has four ideal octahedra around each edge, and infinite octahedra around each vertex in a square tiling vertex figure.Coxeter The Beauty of Geometry, 1999, Chapter 10, Table III
{{Honeycomb}}
Symmetry
A half symmetry construction, [3,4,4,1+], exists as {3,41,1}, with two alternating types (colors) of octahedral cells: {{CDD|node_1|3|node|4|node|4|node_h0}} ↔ {{CDD|node_1|3|node|split1-44|nodes}}.
A second half symmetry is [3,4,1+,4]: {{CDD|node_1|3|node|4|node_h0|4|node}} ↔ {{CDD|node_1|split1|nodes|2a2b-cross|nodes}}.
A higher index sub-symmetry, [3,4,4*], which is index 8, exists with a pyramidal fundamental domain, [((3,∞,3)),((3,∞,3))]: {{CDD|branchu|split2|node_1|split1|branchu}}.
This honeycomb contains {{CDD|node_1|split1|branchu}} and {{CDD|node_1|3|node|ultra|node}} that tile 2-hypercycle surfaces, which are similar to the paracompact infinite-order triangular tilings {{CDD|node_1|split1|branch|labelinfin}} and {{CDD|node_1|3|node|infin|node}}, respectively:
: 120px
Related polytopes and honeycombs
The order-4 octahedral honeycomb is a regular hyperbolic honeycomb in 3-space, and is one of eleven regular paracompact honeycombs.
{{Regular_paracompact_H3_honeycombs}}
There are fifteen uniform honeycombs in the [3,4,4] Coxeter group family, including this regular form.
{{443_family}}
It is a part of a sequence of honeycombs with a square tiling vertex figure:
{{Square tiling vertex figure tessellations}}
It a part of a sequence of regular polychora and honeycombs with octahedral cells:
{{Octahedral cell tessellations}}
= Rectified order-4 octahedral honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Rectified order-4 octahedral honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbols | r{3,4,4} or t1{3,4,4} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|node|3|node_1|4|node|4|node}} {{CDD|node|3|node_1|split1-44|nodes}} ↔ {{CDD|node|3|node_1|4|node|4|node_h0}} {{CDD|node|split1|nodes_11|2a2b-cross|nodes}} ↔ {{CDD|node|3|node_1|4|node_h0|4|node}} {{CDD|branchu_11|split2|node|split1|branchu_11}} ↔ {{CDD|node|3|node_1|4|node_g|4sg|node_g}} |
bgcolor=#e7dcc3|Cells | r{4,3} 40px {4,4}40px |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} |
bgcolor=#e7dcc3|Vertex figure | 80px square prism |
bgcolor=#e7dcc3|Coxeter groups | , [3,4,4] , [3,41,1] |
bgcolor=#e7dcc3|Properties | Vertex-transitive, edge-transitive |
The rectified order-4 octahedral honeycomb, t1{3,4,4}, {{CDD|node|3|node_1|4|node|4|node}} has cuboctahedron and square tiling facets, with a square prism vertex figure.
{{Clear}}
= Truncated order-4 octahedral honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Truncated order-4 octahedral honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbols | t{3,4,4} or t0,1{3,4,4} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|node_1|3|node_1|4|node|4|node}} {{CDD|node_1|3|node_1|split1-44|nodes}} ↔ {{CDD|node_1|3|node_1|4|node|4|node_h0}} {{CDD|node_1|split1|nodes_11|2a2b-cross|nodes}} ↔ {{CDD|node_1|3|node_1|4|node_h0|4|node}} {{CDD|branchu_11|split2|node_1|split1|branchu_11}} ↔ {{CDD|node_1|3|node_1|4|node_g|4sg|node_g}} |
bgcolor=#e7dcc3|Cells | t{3,4} 40px {4,4}40px |
bgcolor=#e7dcc3|Faces | square {4} hexagon {6} |
bgcolor=#e7dcc3|Vertex figure | 80px square pyramid |
bgcolor=#e7dcc3|Coxeter groups | , [3,4,4] , [3,41,1] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The truncated order-4 octahedral honeycomb, t0,1{3,4,4}, {{CDD|node_1|3|node_1|4|node|4|node}} has truncated octahedron and square tiling facets, with a square pyramid vertex figure.
{{Clear}}
= Bitruncated order-4 octahedral honeycomb =
The bitruncated order-4 octahedral honeycomb is the same as the bitruncated square tiling honeycomb.
= Cantellated order-4 octahedral honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Cantellated order-4 octahedral honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbols | rr{3,4,4} or t0,2{3,4,4} s2{3,4,4} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|node_1|3|node|4|node_1|4|node}} {{CDD|node_h|3|node_h|4|node_1|4|node}} {{CDD|node_1|3|node|split1-44|nodes_11}} ↔ {{CDD|node_1|3|node|4|node_1|4|node_h0}} |
bgcolor=#e7dcc3|Cells | rr{3,4} 40px {}x4 40px r{4,4} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} |
bgcolor=#e7dcc3|Vertex figure | 80px wedge |
bgcolor=#e7dcc3|Coxeter groups | , [3,4,4] , [3,41,1] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The cantellated order-4 octahedral honeycomb, t0,2{3,4,4}, {{CDD|node_1|3|node|4|node_1|4|node}} has rhombicuboctahedron, cube, and square tiling facets, with a wedge vertex figure.
{{Clear}}
= Cantitruncated order-4 octahedral honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Cantitruncated order-4 octahedral honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbols | tr{3,4,4} or t0,1,2{3,4,4} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|node_1|3|node_1|4|node_1|4|node}} {{CDD|node_1|3|node_1|split1-44|nodes_11}} ↔ {{CDD|node_1|3|node_1|4|node_1|4|node_h0}} |
bgcolor=#e7dcc3|Cells | tr{3,4} 40px {}x{4} 40px t{4,4} 40px |
bgcolor=#e7dcc3|Faces | square {4} hexagon {6} octagon {8} |
bgcolor=#e7dcc3|Vertex figure | 80px mirrored sphenoid |
bgcolor=#e7dcc3|Coxeter groups | , [3,4,4] , [3,41,1] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The cantitruncated order-4 octahedral honeycomb, t0,1,2{3,4,4}, {{CDD|node_1|3|node_1|4|node_1|4|node}} has truncated cuboctahedron, cube, and truncated square tiling facets, with a mirrored sphenoid vertex figure.
{{Clear}}
= Runcinated order-4 octahedral honeycomb =
The runcinated order-4 octahedral honeycomb is the same as the runcinated square tiling honeycomb.
= Runcitruncated order-4 octahedral honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Runcitruncated order-4 octahedral honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbols | t0,1,3{3,4,4} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|node_1|3|node_1|4|node|4|node_1}} {{CDD|node_1|split1|nodes_11|2a2b-cross|nodes_11}} ↔ {{CDD|node_1|3|node_1|4|node_h0|4|node_1}} |
bgcolor=#e7dcc3|Cells | t{3,4} 40px {6}x{} 40px rr{4,4} 40px |
bgcolor=#e7dcc3|Faces | square {4} hexagon {6} octagon {8} |
bgcolor=#e7dcc3|Vertex figure | 80px square pyramid |
bgcolor=#e7dcc3|Coxeter groups | , [3,4,4] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The runcitruncated order-4 octahedral honeycomb, t0,1,3{3,4,4}, {{CDD|node_1|3|node_1|4|node|4|node_1}} has truncated octahedron, hexagonal prism, and square tiling facets, with a square pyramid vertex figure.
{{Clear}}
= Runcicantellated order-4 octahedral honeycomb =
The runcicantellated order-4 octahedral honeycomb is the same as the runcitruncated square tiling honeycomb.
= Omnitruncated order-4 octahedral honeycomb =
The omnitruncated order-4 octahedral honeycomb is the same as the omnitruncated square tiling honeycomb.
= Snub order-4 octahedral honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Snub order-4 octahedral honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact scaliform honeycomb |
bgcolor=#e7dcc3|Schläfli symbols | s{3,4,4} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|node_h|3|node_h|4|node|4|node}} {{CDD|node_h|3|node_h|split1-44|nodes}} ↔ {{CDD|node_h|3|node_h|4|node|4|node_h0}} {{CDD|node|split1-44|nodes_hh|split2|node_h}} {{CDD|node_h|split1|nodes_hh|2a2b-cross|nodes}} ↔ {{CDD|node_h|3|node_h|4|node_h0|4|node}} {{CDD|branchu_hh|split2|node_h|split1|branchu_hh}} ↔ {{CDD|node_h|3|node_h|4|node_g|4sg|node_g}} |
bgcolor=#e7dcc3|Cells | square tiling icosahedron square pyramid |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | [4,4,3+] [41,1,3+] [(4,4,(3,3)+)] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The snub order-4 octahedral honeycomb, s{3,4,4}, has Coxeter diagram {{CDD|node_h|3|node_h|4|node|4|node}}. It is a scaliform honeycomb, with square pyramid, square tiling, and icosahedron facets.
{{Clear}}
See also
References
{{reflist}}
- Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. {{isbn|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
- The Beauty of Geometry: Twelve Essays (1999), Dover Publications, {{LCCN|99035678}}, {{isbn|0-486-40919-8}} (Chapter 10, [http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf Regular Honeycombs in Hyperbolic Space]) Table III
- Jeffrey R. Weeks The Shape of Space, 2nd edition {{isbn|0-8247-0709-5}} (Chapter 16-17: Geometries on Three-manifolds I, II)
- Norman Johnson Uniform Polytopes, Manuscript
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
- N.W. Johnson: Geometries and Transformations, (2015) Chapter 13: Hyperbolic Coxeter groups
- Norman W. Johnson and Asia Ivic Weiss [https://cms.math.ca/cjm/v51/weisscox8.pdf Quadratic Integers and Coxeter Groups] PDF Can. J. Math. Vol. 51 (6), 1999 pp. 1307–1336