order-4 octahedral honeycomb

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Order-4 octahedral honeycomb

bgcolor=#ffffff align=center colspan=2|320px
Perspective projection view
within Poincaré disk model
bgcolor=#e7dcc3|TypeHyperbolic regular honeycomb
Paracompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbols{3,4,4}
{3,41,1}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_1|3|node|4|node|4|node}}
{{CDD|node_1|3|node|split1-44|nodes}} ↔ {{CDD|node_1|3|node|4|node|4|node_h0}}
{{CDD|node_1|split1|nodes|2a2b-cross|nodes}} ↔ {{CDD|node_1|3|node|4|node_h0|4|node}}
{{CDD|branchu|split2|node_1|split1|branchu}} ↔ {{CDD|node_1|3|node|4|node_g|4sg|node_g}}
bgcolor=#e7dcc3|Cells{3,4} 40px
bgcolor=#e7dcc3|Facestriangle {3}
bgcolor=#e7dcc3|Edge figuresquare {4}
bgcolor=#e7dcc3|Vertex figuresquare tiling, {4,4}
40px 40px 40px 40px
bgcolor=#e7dcc3|DualSquare tiling honeycomb, {4,4,3}
bgcolor=#e7dcc3|Coxeter groups\overline{R}_3, [3,4,4]
\overline{O}_3, [3,41,1]
bgcolor=#e7dcc3|PropertiesRegular

The order-4 octahedral honeycomb is a regular paracompact honeycomb in hyperbolic 3-space. It is paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. Given by Schläfli symbol {3,4,4}, it has four ideal octahedra around each edge, and infinite octahedra around each vertex in a square tiling vertex figure.Coxeter The Beauty of Geometry, 1999, Chapter 10, Table III

{{Honeycomb}}

Symmetry

A half symmetry construction, [3,4,4,1+], exists as {3,41,1}, with two alternating types (colors) of octahedral cells: {{CDD|node_1|3|node|4|node|4|node_h0}} ↔ {{CDD|node_1|3|node|split1-44|nodes}}.

A second half symmetry is [3,4,1+,4]: {{CDD|node_1|3|node|4|node_h0|4|node}} ↔ {{CDD|node_1|split1|nodes|2a2b-cross|nodes}}.

A higher index sub-symmetry, [3,4,4*], which is index 8, exists with a pyramidal fundamental domain, [((3,∞,3)),((3,∞,3))]: {{CDD|branchu|split2|node_1|split1|branchu}}.

This honeycomb contains {{CDD|node_1|split1|branchu}} and {{CDD|node_1|3|node|ultra|node}} that tile 2-hypercycle surfaces, which are similar to the paracompact infinite-order triangular tilings {{CDD|node_1|split1|branch|labelinfin}} and {{CDD|node_1|3|node|infin|node}}, respectively:

: 120px

Related polytopes and honeycombs

The order-4 octahedral honeycomb is a regular hyperbolic honeycomb in 3-space, and is one of eleven regular paracompact honeycombs.

{{Regular_paracompact_H3_honeycombs}}

There are fifteen uniform honeycombs in the [3,4,4] Coxeter group family, including this regular form.

{{443_family}}

It is a part of a sequence of honeycombs with a square tiling vertex figure:

{{Square tiling vertex figure tessellations}}

It a part of a sequence of regular polychora and honeycombs with octahedral cells:

{{Octahedral cell tessellations}}

= Rectified order-4 octahedral honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Rectified order-4 octahedral honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolsr{3,4,4} or t1{3,4,4}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node|3|node_1|4|node|4|node}}
{{CDD|node|3|node_1|split1-44|nodes}} ↔ {{CDD|node|3|node_1|4|node|4|node_h0}}
{{CDD|node|split1|nodes_11|2a2b-cross|nodes}} ↔ {{CDD|node|3|node_1|4|node_h0|4|node}}
{{CDD|branchu_11|split2|node|split1|branchu_11}} ↔ {{CDD|node|3|node_1|4|node_g|4sg|node_g}}
bgcolor=#e7dcc3|Cellsr{4,3} 40px
{4,4}40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
bgcolor=#e7dcc3|Vertex figure80px
square prism
bgcolor=#e7dcc3|Coxeter groups\overline{R}_3, [3,4,4]
\overline{O}_3, [3,41,1]
bgcolor=#e7dcc3|PropertiesVertex-transitive, edge-transitive

The rectified order-4 octahedral honeycomb, t1{3,4,4}, {{CDD|node|3|node_1|4|node|4|node}} has cuboctahedron and square tiling facets, with a square prism vertex figure.

480px

{{Clear}}

= Truncated order-4 octahedral honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Truncated order-4 octahedral honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolst{3,4,4} or t0,1{3,4,4}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_1|3|node_1|4|node|4|node}}
{{CDD|node_1|3|node_1|split1-44|nodes}} ↔ {{CDD|node_1|3|node_1|4|node|4|node_h0}}
{{CDD|node_1|split1|nodes_11|2a2b-cross|nodes}} ↔ {{CDD|node_1|3|node_1|4|node_h0|4|node}}
{{CDD|branchu_11|split2|node_1|split1|branchu_11}} ↔ {{CDD|node_1|3|node_1|4|node_g|4sg|node_g}}
bgcolor=#e7dcc3|Cellst{3,4} 40px
{4,4}40px
bgcolor=#e7dcc3|Facessquare {4}
hexagon {6}
bgcolor=#e7dcc3|Vertex figure80px
square pyramid
bgcolor=#e7dcc3|Coxeter groups\overline{R}_3, [3,4,4]
\overline{O}_3, [3,41,1]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The truncated order-4 octahedral honeycomb, t0,1{3,4,4}, {{CDD|node_1|3|node_1|4|node|4|node}} has truncated octahedron and square tiling facets, with a square pyramid vertex figure.

480px

{{Clear}}

= Bitruncated order-4 octahedral honeycomb =

The bitruncated order-4 octahedral honeycomb is the same as the bitruncated square tiling honeycomb.

= Cantellated order-4 octahedral honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Cantellated order-4 octahedral honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolsrr{3,4,4} or t0,2{3,4,4}
s2{3,4,4}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_1|3|node|4|node_1|4|node}}
{{CDD|node_h|3|node_h|4|node_1|4|node}}
{{CDD|node_1|3|node|split1-44|nodes_11}} ↔ {{CDD|node_1|3|node|4|node_1|4|node_h0}}
bgcolor=#e7dcc3|Cellsrr{3,4} 40px
{}x4 40px
r{4,4} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
bgcolor=#e7dcc3|Vertex figure80px
wedge
bgcolor=#e7dcc3|Coxeter groups\overline{R}_3, [3,4,4]
\overline{O}_3, [3,41,1]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The cantellated order-4 octahedral honeycomb, t0,2{3,4,4}, {{CDD|node_1|3|node|4|node_1|4|node}} has rhombicuboctahedron, cube, and square tiling facets, with a wedge vertex figure.

480px

{{Clear}}

= Cantitruncated order-4 octahedral honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Cantitruncated order-4 octahedral honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolstr{3,4,4} or t0,1,2{3,4,4}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_1|3|node_1|4|node_1|4|node}}
{{CDD|node_1|3|node_1|split1-44|nodes_11}} ↔ {{CDD|node_1|3|node_1|4|node_1|4|node_h0}}
bgcolor=#e7dcc3|Cellstr{3,4} 40px
{}x{4} 40px
t{4,4} 40px
bgcolor=#e7dcc3|Facessquare {4}
hexagon {6}
octagon {8}
bgcolor=#e7dcc3|Vertex figure80px
mirrored sphenoid
bgcolor=#e7dcc3|Coxeter groups\overline{R}_3, [3,4,4]
\overline{O}_3, [3,41,1]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The cantitruncated order-4 octahedral honeycomb, t0,1,2{3,4,4}, {{CDD|node_1|3|node_1|4|node_1|4|node}} has truncated cuboctahedron, cube, and truncated square tiling facets, with a mirrored sphenoid vertex figure.

480px

{{Clear}}

= Runcinated order-4 octahedral honeycomb =

The runcinated order-4 octahedral honeycomb is the same as the runcinated square tiling honeycomb.

= Runcitruncated order-4 octahedral honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Runcitruncated order-4 octahedral honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolst0,1,3{3,4,4}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_1|3|node_1|4|node|4|node_1}}
{{CDD|node_1|split1|nodes_11|2a2b-cross|nodes_11}} ↔ {{CDD|node_1|3|node_1|4|node_h0|4|node_1}}
bgcolor=#e7dcc3|Cellst{3,4} 40px
{6}x{} 40px
rr{4,4} 40px
bgcolor=#e7dcc3|Facessquare {4}
hexagon {6}
octagon {8}
bgcolor=#e7dcc3|Vertex figure80px
square pyramid
bgcolor=#e7dcc3|Coxeter groups\overline{R}_3, [3,4,4]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The runcitruncated order-4 octahedral honeycomb, t0,1,3{3,4,4}, {{CDD|node_1|3|node_1|4|node|4|node_1}} has truncated octahedron, hexagonal prism, and square tiling facets, with a square pyramid vertex figure.

480px

{{Clear}}

= Runcicantellated order-4 octahedral honeycomb =

The runcicantellated order-4 octahedral honeycomb is the same as the runcitruncated square tiling honeycomb.

= Omnitruncated order-4 octahedral honeycomb =

The omnitruncated order-4 octahedral honeycomb is the same as the omnitruncated square tiling honeycomb.

= Snub order-4 octahedral honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Snub order-4 octahedral honeycomb

bgcolor=#e7dcc3|TypeParacompact scaliform honeycomb
bgcolor=#e7dcc3|Schläfli symbolss{3,4,4}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_h|3|node_h|4|node|4|node}}
{{CDD|node_h|3|node_h|split1-44|nodes}} ↔ {{CDD|node_h|3|node_h|4|node|4|node_h0}}
{{CDD|node|split1-44|nodes_hh|split2|node_h}}
{{CDD|node_h|split1|nodes_hh|2a2b-cross|nodes}} ↔ {{CDD|node_h|3|node_h|4|node_h0|4|node}}
{{CDD|branchu_hh|split2|node_h|split1|branchu_hh}} ↔ {{CDD|node_h|3|node_h|4|node_g|4sg|node_g}}
bgcolor=#e7dcc3|Cellssquare tiling
icosahedron
square pyramid
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
bgcolor=#e7dcc3|Vertex figure
bgcolor=#e7dcc3|Coxeter groups[4,4,3+]
[41,1,3+]
[(4,4,(3,3)+)]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The snub order-4 octahedral honeycomb, s{3,4,4}, has Coxeter diagram {{CDD|node_h|3|node_h|4|node|4|node}}. It is a scaliform honeycomb, with square pyramid, square tiling, and icosahedron facets.

{{Clear}}

See also

References

{{reflist}}

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. {{isbn|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, {{LCCN|99035678}}, {{isbn|0-486-40919-8}} (Chapter 10, [http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf Regular Honeycombs in Hyperbolic Space]) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition {{isbn|0-8247-0709-5}} (Chapter 16-17: Geometries on Three-manifolds I, II)
  • Norman Johnson Uniform Polytopes, Manuscript
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • N.W. Johnson: Geometries and Transformations, (2015) Chapter 13: Hyperbolic Coxeter groups
  • Norman W. Johnson and Asia Ivic Weiss [https://cms.math.ca/cjm/v51/weisscox8.pdf Quadratic Integers and Coxeter Groups] PDF Can. J. Math. Vol. 51 (6), 1999 pp. 1307–1336

Category:Regular 3-honeycombs