order-5 cubic honeycomb#Alternated order-5 cubic honeycomb

{{Short description|Regular tiling of hyperbolic 3-space}}

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Order-5 cubic honeycomb

bgcolor=#ffffff align=center colspan=2|320px
Poincaré disk models
bgcolor=#e7dcc3|TypeHyperbolic regular honeycomb
Uniform hyperbolic honeycomb
bgcolor=#e7dcc3|Schläfli symbol{{math|{4,3,5} }}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|4|node|3|node|5|node}}
bgcolor=#e7dcc3|Cells{{math|{4,3} }} (cube)
40px
bgcolor=#e7dcc3|Faces{{math|{4} }} (square)
bgcolor=#e7dcc3|Edge figure{{math|{5} }} (pentagon)
bgcolor=#e7dcc3|Vertex figure80px
icosahedron
bgcolor=#e7dcc3|Coxeter group{{math|{{overline|BH}}{{sub|3}}, [4,3,5]}}
bgcolor=#e7dcc3|DualOrder-4 dodecahedral honeycomb
bgcolor=#e7dcc3|PropertiesRegular

In hyperbolic geometry, the order-5 cubic honeycomb is one of four compact regular space-filling tessellations (or honeycombs) in hyperbolic 3-space. With Schläfli symbol {{math|{4,3,5},}} it has five cubes {{math|{4,3} }} around each edge, and 20 cubes around each vertex. It is dual with the order-4 dodecahedral honeycomb.

{{Honeycomb}}

Description

File:H2-5-4-primal.svg, {4,5}]]

class=wikitable width=600

|200px
One cell, centered in Poincare ball model

|200px
Main cells

|200px
Cells with extended edges to ideal boundary

Symmetry

It has a radical subgroup symmetry construction with dodecahedral fundamental domains: Coxeter notation: [4,(3,5)*], index 120.

Related polytopes and honeycombs

The order-5 cubic honeycomb has a related alternated honeycomb, {{CDD|node_h1|4|node|3|node|5|node}} ↔ {{CDD|nodes_10ru|split2|node|5|node}}, with icosahedron and tetrahedron cells.

The honeycomb is also one of four regular compact honeycombs in 3D hyperbolic space:

{{Regular compact H3 honeycombs}}

There are fifteen uniform honeycombs in the [5,3,4] Coxeter group family, including the order-5 cubic honeycomb as the regular form:

{{534 family}}

The order-5 cubic honeycomb is in a sequence of regular polychora and honeycombs with icosahedral vertex figures.

{{Icosahedral vertex figure tessellations}}

It is also in a sequence of regular polychora and honeycombs with cubic cells. The first polytope in the sequence is the tesseract, and the second is the Euclidean cubic honeycomb.

{{Cubic cell tessellations}}

= Rectified order-5 cubic honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Rectified order-5 cubic honeycomb

bgcolor=#e7dcc3|TypeUniform honeycombs in hyperbolic space
bgcolor=#e7dcc3|Schläfli symbolh{4,3,5}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_h1|4|node|3|node|5|node}} ↔ {{CDD|nodes_10ru|split2|node|5|node}}
bgcolor=#e7dcc3|Cells{3,3} 40px
{3,5} 40px
bgcolor=#e7dcc3|Facestriangle {3}
bgcolor=#e7dcc3|Vertex figure80px
icosidodecahedron
bgcolor=#e7dcc3|Coxeter group\overline{DH}_3, [5,31,1]
bgcolor=#e7dcc3|PropertiesVertex-transitive, edge-transitive, quasiregular

In 3-dimensional hyperbolic geometry, the alternated order-5 cubic honeycomb is a uniform compact space-filling tessellation (or honeycomb). With Schläfli symbol h{4,3,5}, it can be considered a quasiregular honeycomb, alternating icosahedra and tetrahedra around each vertex in an icosidodecahedron vertex figure.

480px

{{Clear}}

== Related honeycombs==

It has 3 related forms: the cantic order-5 cubic honeycomb, {{CDD|node_h1|4|node|3|node_1|5|node}}, the runcic order-5 cubic honeycomb, {{CDD|node_h1|4|node|3|node|5|node_1}}, and the runcicantic order-5 cubic honeycomb, {{CDD|node_h1|4|node|3|node_1|5|node_1}}.

=Cantic order-5 cubic honeycomb=

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Cantic order-5 cubic honeycomb

bgcolor=#e7dcc3|TypeUniform honeycombs in hyperbolic space
bgcolor=#e7dcc3|Schläfli symbolh2{4,3,5}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_h1|4|node|3|node_1|5|node}} ↔ {{CDD|nodes_10ru|split2|node_1|5|node}}
bgcolor=#e7dcc3|Cellsr{5,3} 40px
t{3,5} 40px
t{3,3} 40px
bgcolor=#e7dcc3|Facestriangle {3}
pentagon {5}
hexagon {6}
bgcolor=#e7dcc3|Vertex figure80px
rectangular pyramid
bgcolor=#e7dcc3|Coxeter group\overline{DH}_3, [5,31,1]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The cantic order-5 cubic honeycomb is a uniform compact space-filling tessellation (or honeycomb), with Schläfli symbol h2{4,3,5}. It has icosidodecahedron, truncated icosahedron, and truncated tetrahedron cells, with a rectangular pyramid vertex figure.

480px

{{Clear}}

=Runcic order-5 cubic honeycomb=

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Runcic order-5 cubic honeycomb

bgcolor=#e7dcc3|TypeUniform honeycombs in hyperbolic space
bgcolor=#e7dcc3|Schläfli symbolh3{4,3,5}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_h1|4|node|3|node|5|node_1}} ↔ {{CDD|nodes_10ru|split2|node|5|node_1}}
bgcolor=#e7dcc3|Cells{5,3} 40px
rr{5,3} 40px
{3,3} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
pentagon {5}
bgcolor=#e7dcc3|Vertex figure80px
triangular frustum
bgcolor=#e7dcc3|Coxeter group\overline{DH}_3, [5,31,1]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The runcic order-5 cubic honeycomb is a uniform compact space-filling tessellation (or honeycomb), with Schläfli symbol h3{4,3,5}. It has dodecahedron, rhombicosidodecahedron, and tetrahedron cells, with a triangular frustum vertex figure.

480px

{{Clear}}

=Runcicantic order-5 cubic honeycomb=

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Runcicantic order-5 cubic honeycomb

bgcolor=#e7dcc3|TypeUniform honeycombs in hyperbolic space
bgcolor=#e7dcc3|Schläfli symbolh2,3{4,3,5}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_h1|4|node|3|node_1|5|node_1}} ↔ {{CDD|nodes_10ru|split2|node_1|5|node_1}}
bgcolor=#e7dcc3|Cellst{5,3} 40px
tr{5,3} 40px
t{3,3} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
hexagon {6}
decagon {10}
bgcolor=#e7dcc3|Vertex figure80px
irregular tetrahedron
bgcolor=#e7dcc3|Coxeter group\overline{DH}_3, [5,31,1]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The runcicantic order-5 cubic honeycomb is a uniform compact space-filling tessellation (or honeycomb), with Schläfli symbol h2,3{4,3,5}. It has truncated dodecahedron, truncated icosidodecahedron, and truncated tetrahedron cells, with an irregular tetrahedron vertex figure.

480px

{{Clear}}

See also

References

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. {{isbn|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999 {{isbn|0-486-40919-8}} (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II, III, IV, V, p212-213)
  • Norman Johnson Uniform Polytopes, Manuscript
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • N.W. Johnson: Geometries and Transformations, (2015) Chapter 13: Hyperbolic Coxeter groups

Category:Regular 3-honeycombs