order-5 cubic honeycomb#Alternated order-5 cubic honeycomb
{{Short description|Regular tiling of hyperbolic 3-space}}
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Order-5 cubic honeycomb | |
bgcolor=#ffffff align=center colspan=2|320px Poincaré disk models | |
bgcolor=#e7dcc3|Type | Hyperbolic regular honeycomb Uniform hyperbolic honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | {{math|{4,3,5} }} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_1|4|node|3|node|5|node}} |
bgcolor=#e7dcc3|Cells | {{math|{4,3} }} (cube) 40px |
bgcolor=#e7dcc3|Faces | {{math|{4} }} (square) |
bgcolor=#e7dcc3|Edge figure | {{math|{5} }} (pentagon) |
bgcolor=#e7dcc3|Vertex figure | 80px icosahedron |
bgcolor=#e7dcc3|Coxeter group | {{math|{{overline|BH}}{{sub|3}}, [4,3,5]}} |
bgcolor=#e7dcc3|Dual | Order-4 dodecahedral honeycomb |
bgcolor=#e7dcc3|Properties | Regular |
In hyperbolic geometry, the order-5 cubic honeycomb is one of four compact regular space-filling tessellations (or honeycombs) in hyperbolic 3-space. With Schläfli symbol {{math|{4,3,5},}} it has five cubes {{math|{4,3} }} around each edge, and 20 cubes around each vertex. It is dual with the order-4 dodecahedral honeycomb.
{{Honeycomb}}
Description
File:H2-5-4-primal.svg, {4,5}]]
class=wikitable width=600
|200px |200px |200px |
Symmetry
It has a radical subgroup symmetry construction with dodecahedral fundamental domains: Coxeter notation: [4,(3,5)*], index 120.
Related polytopes and honeycombs
The order-5 cubic honeycomb has a related alternated honeycomb, {{CDD|node_h1|4|node|3|node|5|node}} ↔ {{CDD|nodes_10ru|split2|node|5|node}}, with icosahedron and tetrahedron cells.
The honeycomb is also one of four regular compact honeycombs in 3D hyperbolic space:
{{Regular compact H3 honeycombs}}
There are fifteen uniform honeycombs in the [5,3,4] Coxeter group family, including the order-5 cubic honeycomb as the regular form:
{{534 family}}
The order-5 cubic honeycomb is in a sequence of regular polychora and honeycombs with icosahedral vertex figures.
{{Icosahedral vertex figure tessellations}}
It is also in a sequence of regular polychora and honeycombs with cubic cells. The first polytope in the sequence is the tesseract, and the second is the Euclidean cubic honeycomb.
{{Cubic cell tessellations}}
= Rectified order-5 cubic honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Rectified order-5 cubic honeycomb | |
bgcolor=#e7dcc3|Type | Uniform honeycombs in hyperbolic space |
bgcolor=#e7dcc3|Schläfli symbol | h{4,3,5} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_h1|4|node|3|node|5|node}} ↔ {{CDD|nodes_10ru|split2|node|5|node}} |
bgcolor=#e7dcc3|Cells | {3,3} 40px {3,5} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} |
bgcolor=#e7dcc3|Vertex figure | 80px icosidodecahedron |
bgcolor=#e7dcc3|Coxeter group | , [5,31,1] |
bgcolor=#e7dcc3|Properties | Vertex-transitive, edge-transitive, quasiregular |
In 3-dimensional hyperbolic geometry, the alternated order-5 cubic honeycomb is a uniform compact space-filling tessellation (or honeycomb). With Schläfli symbol h{4,3,5}, it can be considered a quasiregular honeycomb, alternating icosahedra and tetrahedra around each vertex in an icosidodecahedron vertex figure.
{{Clear}}
== Related honeycombs==
It has 3 related forms: the cantic order-5 cubic honeycomb, {{CDD|node_h1|4|node|3|node_1|5|node}}, the runcic order-5 cubic honeycomb, {{CDD|node_h1|4|node|3|node|5|node_1}}, and the runcicantic order-5 cubic honeycomb, {{CDD|node_h1|4|node|3|node_1|5|node_1}}.
=Cantic order-5 cubic honeycomb=
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Cantic order-5 cubic honeycomb | |
bgcolor=#e7dcc3|Type | Uniform honeycombs in hyperbolic space |
bgcolor=#e7dcc3|Schläfli symbol | h2{4,3,5} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_h1|4|node|3|node_1|5|node}} ↔ {{CDD|nodes_10ru|split2|node_1|5|node}} |
bgcolor=#e7dcc3|Cells | r{5,3} 40px t{3,5} 40px t{3,3} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} pentagon {5} hexagon {6} |
bgcolor=#e7dcc3|Vertex figure | 80px rectangular pyramid |
bgcolor=#e7dcc3|Coxeter group | , [5,31,1] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The cantic order-5 cubic honeycomb is a uniform compact space-filling tessellation (or honeycomb), with Schläfli symbol h2{4,3,5}. It has icosidodecahedron, truncated icosahedron, and truncated tetrahedron cells, with a rectangular pyramid vertex figure.
{{Clear}}
=Runcic order-5 cubic honeycomb=
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Runcic order-5 cubic honeycomb | |
bgcolor=#e7dcc3|Type | Uniform honeycombs in hyperbolic space |
bgcolor=#e7dcc3|Schläfli symbol | h3{4,3,5} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_h1|4|node|3|node|5|node_1}} ↔ {{CDD|nodes_10ru|split2|node|5|node_1}} |
bgcolor=#e7dcc3|Cells | {5,3} 40px rr{5,3} 40px {3,3} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} pentagon {5} |
bgcolor=#e7dcc3|Vertex figure | 80px triangular frustum |
bgcolor=#e7dcc3|Coxeter group | , [5,31,1] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The runcic order-5 cubic honeycomb is a uniform compact space-filling tessellation (or honeycomb), with Schläfli symbol h3{4,3,5}. It has dodecahedron, rhombicosidodecahedron, and tetrahedron cells, with a triangular frustum vertex figure.
{{Clear}}
=Runcicantic order-5 cubic honeycomb=
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Runcicantic order-5 cubic honeycomb | |
bgcolor=#e7dcc3|Type | Uniform honeycombs in hyperbolic space |
bgcolor=#e7dcc3|Schläfli symbol | h2,3{4,3,5} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_h1|4|node|3|node_1|5|node_1}} ↔ {{CDD|nodes_10ru|split2|node_1|5|node_1}} |
bgcolor=#e7dcc3|Cells | t{5,3} 40px tr{5,3} 40px t{3,3} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} hexagon {6} decagon {10} |
bgcolor=#e7dcc3|Vertex figure | 80px irregular tetrahedron |
bgcolor=#e7dcc3|Coxeter group | , [5,31,1] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The runcicantic order-5 cubic honeycomb is a uniform compact space-filling tessellation (or honeycomb), with Schläfli symbol h2,3{4,3,5}. It has truncated dodecahedron, truncated icosidodecahedron, and truncated tetrahedron cells, with an irregular tetrahedron vertex figure.
{{Clear}}
See also
References
- Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. {{isbn|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
- Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999 {{isbn|0-486-40919-8}} (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II, III, IV, V, p212-213)
- Norman Johnson Uniform Polytopes, Manuscript
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
- N.W. Johnson: Geometries and Transformations, (2015) Chapter 13: Hyperbolic Coxeter groups