p-adic gamma function

{{DISPLAYTITLE:p-adic gamma function}}

In mathematics, the p-adic gamma function Γp is a function of a p-adic variable analogous to the gamma function. It was first explicitly defined by {{harvtxt|Morita|1975}}, though {{harvtxt|Boyarsky|1980}} pointed out that {{harvtxt|Dwork|1964}} implicitly used the same function. {{harvtxt|Diamond|1977}} defined a p-adic analog Gp of log Γ. {{harvtxt|Overholtzer|1952}} had previously given a definition of a different p-adic analogue of the gamma function, but his function does not have satisfactory properties and is not used much.

Definition

The p-adic gamma function is the unique continuous function of a p-adic integer x (with values in \mathbb{Z}_p) such that

:\Gamma_p(x) = (-1)^x \prod_{0

for positive integers x, where the product is restricted to integers i not divisible by p. As the positive integers are dense with respect to the p-adic topology in \mathbb{Z}_p, \Gamma_p(x) can be extended uniquely to the whole of \mathbb{Z}_p. Here \mathbb{Z}_p is the ring of p-adic integers. It follows from the definition that the values of \Gamma_p(\mathbb{Z}) are invertible in \mathbb{Z}_p; this is because these values are products of integers not divisible by p, and this property holds after the continuous extension to \mathbb{Z}_p. Thus \Gamma_p:\mathbb{Z}_p\to\mathbb{Z}_p^\times. Here \mathbb{Z}_p^\times is the set of invertible p-adic integers.

Basic properties of the p-adic gamma function

The classical gamma function satisfies the functional equation \Gamma(x+1) = x\Gamma(x) for any x\in\mathbb{C}\setminus\mathbb{Z}_{\le0}. This has an analogue with respect to the Morita gamma function:

:\frac{\Gamma_p(x+1)}{\Gamma_p(x)}=\begin{cases} -x, & \mbox{if } x \in \mathbb{Z}_p^\times \\ -1, & \mbox{if } x\in p\mathbb{Z}_p. \end{cases}

The Euler's reflection formula \Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin{(\pi x)}} has its following simple counterpart in the p-adic case:

:\Gamma_p(x)\Gamma_p(1-x) = (-1)^{x_0},

where x_0 is the first digit in the p-adic expansion of x, unless x \in p\mathbb{Z}_p, in which case x_0 = p rather than 0.

Special values

:\Gamma_p(0)=1,

:\Gamma_p(1)=-1,

:\Gamma_p(2)=1,

:\Gamma_p(3)=-2,

and, in general,

:\Gamma_p(n+1)=\frac{(-1)^{n+1}n!}{[n/p]!p^{[n/p]}}\quad(n\ge2).

At x=\frac12 the Morita gamma function is related to the Legendre symbol \left(\frac{a}{p}\right):

:\Gamma_p\left(\frac12\right)^2 = -\left(\frac{-1}{p}\right).

It can also be seen, that \Gamma_p(p^n)\equiv1\pmod{p^n}, hence \Gamma_p(p^n)\to1 as n\to\infty.{{rp|369}}

Other interesting special values come from the Gross–Koblitz formula, which was first proved by cohomological tools, and later was proved using more elementary methods.{{cite journal | last1 = Robert | first1 = Alain M. | title = The Gross-Koblitz formula revisited | url=http://www.numdam.org/item?id=RSMUP_2001__105__157_0 | mr=1834987 | journal = Rendiconti del Seminario Matematico della Università di Padova. The Mathematical Journal of the University of Padova | issn=0041-8994 | year = 2001 | volume = 105 | pages = 157–170 | doi=10.1016/j.jnt.2009.08.005| hdl = 2437/90539 | hdl-access = free }} For example,

:\Gamma_5\left(\frac14\right)^2=-2+\sqrt{-1},

:\Gamma_7\left(\frac13\right)^3=\frac{1-3\sqrt{-3}}{2},

where \sqrt{-1}\in\mathbb{Z}_5 denotes the square root with first digit 3, and \sqrt{-3}\in\mathbb{Z}_7 denotes the square root with first digit 2. (Such specifications must always be done if we talk about roots.)

Another example is

:\Gamma_3\left(\frac18\right)\Gamma_3\left(\frac38\right)=-(1+\sqrt{-2}),

where \sqrt{-2} is the square root of -2 in \mathbb{Q}_3 congruent to 1 modulo 3.{{cite book|first = H. | last = Cohen | title=Number Theory | volume = 2| publisher = Springer Science+Business Media | location = New York | date=2007 | page = 406}}

''p''-adic Raabe formula

The Raabe-formula for the classical Gamma function says that

:\int_0^1\log\Gamma(x+t)dt=\frac12\log(2\pi)+x\log x-x.

This has an analogue for the Iwasawa logarithm of the Morita gamma function:{{cite journal | last1 = Cohen | first1 = Henri | last2 = Eduardo | first2 = Friedman | title = Raabe's formula for p-adic gamma and zeta functions | mr = 2401225 | journal = Annales de l'Institut Fourier | year = 2008 | volume = 88 |issue = 1 | pages = 363–376 | doi=10.5802/aif.2353 | url = http://www.numdam.org/item/AIF_2008__58_1_363_0/ | hdl = 10533/139530 | hdl-access = free }}

:\int_{\mathbb{Z}_p}\log\Gamma_p(x+t)dt=(x-1)(\log\Gamma_p)'(x)-x+\left\lceil\frac{x}{p}\right\rceil\quad(x\in\mathbb{Z}_p).

The ceiling function to be understood as the p-adic limit \lim_{n\to\infty}\left\lceil\frac{x_n}{p}\right\rceil such that x_n\to x through rational integers.

Mahler expansion

The Mahler expansion is similarly important for p-adic functions as the Taylor expansion in classical analysis. The Mahler expansion of the p-adic gamma function is the following:{{rp|374}}

:\Gamma_p(x+1)=\sum_{k=0}^\infty a_k\binom{x}{k},

where the sequence a_k is defined by the following identity:

:\sum_{k=0}^\infty(-1)^{k+1}a_k\frac{x^k}{k!}=\frac{1-x^p}{1-x}\exp\left(x+\frac{x^p}{p}\right).

See also

References

  • {{Citation | last1=Boyarsky | first1=Maurizio | title=p-adic gamma functions and Dwork cohomology | doi=10.2307/1998301 |mr=552263 | year=1980 | journal=Transactions of the American Mathematical Society | issn=0002-9947 | volume=257 | issue=2 | pages=359–369| jstor=1998301 }}
  • {{Citation | last1=Diamond | first1=Jack | title=The p-adic log gamma function and p-adic Euler constants | jstor=1997840 |mr=0498503 | year=1977 | journal=Transactions of the American Mathematical Society | issn=0002-9947 | volume=233 | pages=321–337 | doi=10.2307/1997840}}
  • {{Citation | last1=Diamond | first1=Jack | editor1-last=Chudnovsky | editor1-first=David V. | editor1-link=Chudnovsky brothers | editor2-last=Chudnovsky | editor2-first=Gregory V. | editor3-last=Cohn | editor3-first=Henry |display-editors = 3 | editor4-last=Nathanson | editor4-first=Melvyn B. | title=Number theory (New York, 1982) | publisher=Springer-Verlag | location=Berlin, New York | series=Lecture Notes in Math. | isbn=978-3-540-12909-7 | doi=10.1007/BFb0071542 |mr=750664 | year=1984 | volume=1052 | chapter=p-adic gamma functions and their applications | pages=168–175}}
  • {{Citation | last1=Dwork | first1=Bernard | title=On the zeta function of a hypersurface. II | jstor=1970392 |mr=0188215 | year=1964 | journal=Annals of Mathematics |series=Second Series | issn=0003-486X | volume=80 | issue=2 | pages=227–299 | doi=10.2307/1970392}}
  • {{Citation | last1=Morita | first1=Yasuo | title=A p-adic analogue of the Γ-function |mr=0424762 | year=1975 | journal=Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics | issn=0040-8980 | volume=22 | issue=2 | pages=255–266| hdl=2261/6494 }}
  • {{Citation | last1=Overholtzer | first1=Gordon | title=Sum functions in elementary p-adic analysis | jstor=2371998 |mr=0048493 | year=1952 | journal=American Journal of Mathematics | issn=0002-9327 | volume=74 | issue=2 | pages=332–346 | doi=10.2307/2371998}}

{{reflist|refs=

{{cite book | first = Alain M. | last = Robert | title = A course in p-adic analysis | publisher = Springer-Verlag | location = New York | date=2000}}

}}

Category:Number theory

Category:P-adic numbers