parabolic cylinder function

{{Short description|Concept in mathematics}}

File:Parabolic cylindrical coordinates.png of parabolic cylindrical coordinates. Parabolic cylinder functions occur when separation of variables is used on Laplace's equation in these coordinates]]

File:Plot of the parabolic cylinder function D v(z) with v=5 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg

In mathematics, the parabolic cylinder functions are special functions defined as solutions to the differential equation

{{NumBlk|:|\frac{d^2f}{dz^2} + \left(\tilde{a}z^2+\tilde{b}z+\tilde{c}\right)f=0.|{{EquationRef|1}}}}

This equation is found when the technique of separation of variables is used on Laplace's equation when expressed in parabolic cylindrical coordinates.

The above equation may be brought into two distinct forms (A) and (B) by completing the square and rescaling {{mvar|z}}, called H. F. Weber's equations:

{{NumBlk|:|\frac{d^2f}{dz^2} - \left(\tfrac14z^2+a\right)f=0|{{EquationRef|A}}}}

and

{{NumBlk|:|\frac{d^2f}{dz^2} + \left(\tfrac14z^2-a\right)f=0.|{{EquationRef|B}}}}

If f(a,z) is a solution, then so are

f(a,-z), f(-a,iz)\text{ and }f(-a,-iz).

If f(a,z)\, is a solution of equation ({{EquationNote|A}}), then f(-ia,ze^{(1/4)\pi i}) is a solution of ({{EquationNote|B}}), and, by symmetry,

f(-ia,-ze^{(1/4)\pi i}), f(ia,-ze^{-(1/4)\pi i})\text{ and }f(ia,ze^{-(1/4)\pi i})

are also solutions of ({{EquationNote|B}}).

Solutions

There are independent even and odd solutions of the form ({{EquationNote|A}}). These are given by (following the notation of Abramowitz and Stegun (1965)):

y_1(a;z) = \exp(-z^2/4) \;_1F_1

\left(\tfrac12a+\tfrac14; \;

\tfrac12\; ; \; \frac{z^2}{2}\right)\,\,\,\,\,\, (\mathrm{even})

and

y_2(a;z) = z\exp(-z^2/4) \;_1F_1

\left(\tfrac12a+\tfrac34; \;

\tfrac32\; ; \; \frac{z^2}{2}\right)\,\,\,\,\,\, (\mathrm{odd})

where \;_1F_1 (a;b;z)=M(a;b;z) is the confluent hypergeometric function.

Other pairs of independent solutions may be formed from linear combinations of the above solutions. One such pair is based upon their behavior at infinity:

U(a,z)=\frac{1}{2^\xi\sqrt{\pi}}

\left[

\cos(\xi\pi)\Gamma(1/2-\xi)\,y_1(a,z)

-\sqrt{2}\sin(\xi\pi)\Gamma(1-\xi)\,y_2(a,z)

\right]

V(a,z)=\frac{1}{2^\xi\sqrt{\pi}\Gamma[1/2-a]}

\left[

\sin(\xi\pi)\Gamma(1/2-\xi)\,y_1(a,z)

+\sqrt{2}\cos(\xi\pi)\Gamma(1-\xi)\,y_2(a,z)

\right]

where \xi = \frac{1}{2}a+\frac{1}{4} .

The function {{math|U(a, z)}} approaches zero for large values of {{mvar|z}} and {{math|{{!}}arg(z){{!}} < π/2}}, while {{math|V(a, z)}} diverges for large values of positive real {{mvar|z}}.

\lim_{z\to\infty}U(a,z)/\left(e^{-z^2/4}z^{-a-1/2}\right)=1\,\,\,\,(\text{for}\,\left|\arg(z)\right|<\pi/2)

and

\lim_{z\to\infty}V(a,z)/\left(\sqrt{\frac{2}{\pi}}e^{z^2/4}z^{a-1/2}\right)=1\,\,\,\,(\text{for}\,\arg(z)=0) .

For half-integer values of a, these (that is, U and V) can be re-expressed in terms of Hermite polynomials; alternatively, they can also be expressed in terms of Bessel functions.

The functions U and V can also be related to the functions {{math|1=Dp(x)}} (a notation dating back to Whittaker (1902)) that are themselves sometimes called parabolic cylinder functions:

\begin{align}

U(a,x) &= D_{-a-\tfrac12}(x), \\

V(a,x) &= \frac{\Gamma(\tfrac12+a)}{\pi}[\sin( \pi a) D_{-a-\tfrac12}(x)+D_{-a-\tfrac12}(-x)] .

\end{align}

Function {{math|1=Da(z)}} was introduced by Whittaker and Watson as a solution of eq.~({{EquationNote|1}}) with \tilde a=-\frac14, \tilde b=0, \tilde c=a+\frac12 bounded at +\infty. It can be expressed in terms of confluent hypergeometric functions as

:D_a(z)=\frac{1}{\sqrt{\pi }}{2^{a/2} e^{-\frac{z^2}{4}} \left(\cos \left(\frac{\pi a}{2}\right) \Gamma \left(\frac{a+1}{2}\right) \, _1F_1\left(-\frac{a}{2};\frac{1}{2};\frac{z^2}{2}\right)+\sqrt{2} z \sin \left(\frac{\pi a}{2}\right) \Gamma \left(\frac{a}{2}+1\right) \, _1F_1\left(\frac{1}{2}-\frac{a}{2};\frac{3}{2};\frac{z^2}{2}\right)\right)}.

Power series for this function have been obtained by Abadir (1993).

Parabolic Cylinder U(a,z) function

= Integral representation =

Integrals along the real line,

U(a,z)=\frac{e^{-\frac14 z^2}}{\Gamma\left(a+\frac12\right)}

\int_0^\infty e^{-zt}t^{a-\frac12}e^{-\frac12 t^2}dt

\,,\; \Re a>-\frac12 \;,

U(a,z)=\sqrt{\frac2{\pi}}e^{\frac14 z^2}

\int_0^\infty \cos\left(zt+\frac{\pi}{2}a+\frac{\pi}{4}\right)

t^{-a-\frac12}e^{-\frac12 t^2}dt

\,,\; \Re a<\frac12 \;.

The fact that these integrals are solutions to equation ({{EquationNote|A}}) can be easily checked by direct substitution.

= Derivative =

Differentiating the integrals with respect to z gives two expressions for U'(a,z),

U'(a,z)=-\frac{z}{2}U(a,z)-

\frac{e^{-\frac14 z^2}}{\Gamma\left(a+\frac12\right)}

\int_0^\infty e^{-zt}t^{a+\frac12}e^{-\frac12 t^2}dt

=-\frac{z}{2}U(a,z)-\left(a+\frac12\right)U(a+1,z) \;,

U'(a,z)=\frac{z}{2}U(a,z)-

\sqrt{\frac2{\pi}}e^{\frac14 z^2}

\int_0^\infty \sin\left(zt+\frac{\pi}{2}a+\frac{\pi}{4}\right)

t^{-a+\frac12}e^{-\frac12 t^2}dt

= \frac{z}{2}U(a,z)-U(a-1,z) \;.

Adding the two gives another expression for the derivative,

2U'(a,z) = -\left(a+\frac12\right)U(a+1,z)-U(a-1,z)

\;.

= Recurrence relation =

Subtracting the first two expressions for the derivative gives the recurrence relation,

zU(a,z) = U(a-1,z) - \left(a+\frac12\right)U(a+1,z) \;.

= Asymptotic expansion =

Expanding

e^{-\frac12 t^2}=1-\frac12 t^2+\frac18 t^4 - \dots \;

in the integrand of the integral representation

gives the asymptotic expansion of U(a,z),

U(a,z) = e^{-\frac14 z^2}z^{-a-\frac12}\left(1

- \frac{(a+\frac12)(a+\frac32)}{2}\frac{1}{z^2}

+ \frac{(a+\frac12)(a+\frac32)(a+\frac52)(a+\frac72)}{8}\frac{1}{z^4}

- \dots\right) .

= Power series =

Expanding the integral representation in powers of z gives

U(a,z)=\frac{\sqrt{\pi}\,2^{-\frac{a}{2}-\frac14}}{\Gamma\left(\frac{a}{2}+\frac34\right)}

-\frac{\sqrt{\pi}\,2^{-\frac{a}{2}+\frac14}}{\Gamma\left(\frac{a}{2}+\frac14\right)}z

+\frac{\sqrt{\pi}\,2^{-\frac{a}{2}-\frac54}}{\Gamma\left(\frac{a}{2}+\frac34\right)}z^2 - \dots \;.

= Values at z=0 =

From the power series one immediately gets

U(a,0)=\frac{\sqrt{\pi}\,2^{-\frac{a}{2}-\frac14}}{\Gamma\left(\frac{a}{2}+\frac34\right)} \;,

U'(a,0)=-\frac{\sqrt{\pi}\,2^{-\frac{a}{2}+\frac14}}{\Gamma\left(\frac{a}{2}+\frac14\right)} \;.

Parabolic cylinder D<sub>&nu;</sub>(z) function

Parabolic cylinder function D_\nu(z) is the solution to the Weber differential equation,

u''+\left(\nu+\frac12-\frac{1}{4} z^2 \right)u=0 \,,

that is regular at \Re z\to +\infty with the asymptotics

D_\nu(z) \to e^{-\frac14 z^2}z^\nu \,.

It is thus given as D_\nu(z)=U(-\nu-1/2,z) and its properties then directly follow from those of the U-function.

= Integral representation =

D_\nu(z)=\frac{e^{-\frac14 z^2}}{\Gamma(-\nu)}

\int_0^\infty e^{-zt} t^{-\nu -1} e^{-\frac12 t^2}dt

\,,\; \Re \nu < 0 \,,\; \Re z > 0\;,

D_\nu(z)=\sqrt{\frac2{\pi}}e^{\frac14 z^2}

\int_0^\infty \cos\left(zt-\nu \frac{\pi}{2}\right)

t^{\nu}e^{-\frac12 t^2}dt

\,,\; \Re \nu > -1 \;.

= Asymptotic expansion =

D_\nu(z) = e^{-\frac14 z^2}z^{\nu}\left(1

- \frac{\nu (\nu -1)}{2}\frac{1}{z^2}

+ \frac{\nu (\nu -1)(\nu -2)(\nu -3)}{8}\frac{1}{z^4}

- \dots\right)\,,\; \Re z \to +\infty .

If \nu is a non-negative integer this series terminates and turns into a polynomial, namely the Hermite polynomial,

D_n(z) = e^{-\frac14 z^2}\;2^{-n/2}H_n\left(\frac{z}{\sqrt{2}}\right)\,, n=0,1,2,\dots \;.

= Connection with quantum harmonic oscillator =

Parabolic cylinder D_\nu(z) function appears naturally in the Schrödinger equation for the one-dimensional quantum harmonic oscillator (a quantum particle in the oscillator potential),

\left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+\frac12 m \omega^2 x^2 \right]\psi(x)

=E\psi(x) \;,

where

\hbar is the reduced Planck constant,

m is the mass of the particle,

x is the coordinate of the particle,

\omega is the frequency of the oscillator,

E is the energy,

and \psi(x) is the particle's wave-function. Indeed introducing the new quantities

z=\frac{x}{b_o} \,,\; \nu=\frac{E}{\hbar\omega}-\frac12 \,,\; b_o=\sqrt{\frac{\hbar}{2m\omega}} \,,

turns the above equation into the Weber's equation for the function u(z)=\psi(zb_o),

u''+\left(\nu+\frac12-\frac{1}{4} z^2 \right)u=0 \,.

References

{{reflist | refs =

Abadir, K. M. (1993) "Expansions for some confluent hypergeometric functions." Journal of Physics A, 26, 4059-4066.

{{AS ref |19|686}}

{{citation |last=Weber |first=H.F. |date=1869 |title=Ueber die Integration der partiellen Differentialgleichung \partial^2u/\partial x^2+\partial^2u/\partial y^2+k^2u=0 |work=Math. Ann. |volume=1 |pages=1–36}}

Whittaker, E.T. (1902) "On the functions associated with the parabolic cylinder in harmonic analysis" Proc. London Math. Soc., 35, 417–427.

Whittaker, E. T. and Watson, G. N. (1990) "The Parabolic Cylinder Function." §16.5 in A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, pp. 347-348.

NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release 1.2.2 of 2024-09-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.

}}

{{DEFAULTSORT:Parabolic Cylinder Function}}

Category:Special hypergeometric functions

Category:Special functions