partial algebra
In abstract algebra, a partial algebra is a generalization of universal algebra to partial operations.{{cite book|editor1=Ivo G. Rosenberg |editor2=Gert Sabidussi|title=Algebras and Orders|year=1993|publisher=Springer Science & Business Media|isbn=978-0-7923-2143-9|author=Peter Burmeister|chapter=Partial algebras—an introductory survey | pages=1–70}}{{cite book|author=George A. Grätzer|title=Universal Algebra|url=https://archive.org/details/isbn_9780387774862|url-access=registration|year=2008|publisher=Springer Science & Business Media|isbn=978-0-387-77487-9|at=Chapter 2. Partial algebras|edition=2nd}}
Example(s)
- partial groupoid
- field — the multiplicative inversion is the only proper partial operation
- effect algebras{{Cite journal | doi = 10.1007/BF02283036| title = Effect algebras and unsharp quantum logics| journal = Foundations of Physics| volume = 24| issue = 10| pages = 1331| year = 1994| last1 = Foulis | first1 = D. J.| last2 = Bennett | first2 = M. K.| bibcode = 1994FoPh...24.1331F| hdl = 10338.dmlcz/142815| s2cid = 123349992| hdl-access = free}}
Structure
References
{{reflist}}
Further reading
- {{cite book|author=Peter Burmeister|title=A Model Theoretic Oriented Approach to Partial Algebras|year=2002|orig-year=1986|citeseerx=10.1.1.92.6134}}
- {{cite book|author=Horst Reichel|title=Structural induction on partial algebras|year=1984|publisher=Akademie-Verlag}}
- {{cite book|author=Horst Reichel|title=Initial computability, algebraic specifications, and partial algebras|year=1987|publisher=Clarendon Press|isbn=978-0-19-853806-6}}
{{Authority control}}
{{algebra-stub}}