pentagonal orthocupolarotunda
{{Short description|32nd Johnson solid; pentagonal cupola and rotunda joined base-to-base}}
{{Infobox polyhedron
|image=pentagonal_orthocupolarotunda.png
|type=Johnson
{{math|pentagonal gyrobicupola – J{{sub|32}} – pentagonal gyrocupolarotunda}}
|faces=3×5 triangles
5 squares
2+5 pentagons
|edges=50
|vertices=25
|symmetry={{math|C{{sub|5v}}}}
|vertex_config={{math|10(3.4.3.5)
5(3.4.5.4)
2.5(3.5.3.5)}}
|dual=-
|properties=convex
|net=Johnson solid 32 net.png
}}
In geometry, the pentagonal orthocupolarotunda is one of the Johnson solids ({{math|J{{sub|32}}}}). As the name suggests, it can be constructed by joining a pentagonal cupola ({{math|J{{sub|5}}}}) and a pentagonal rotunda ({{math|J{{sub|6}}}}) along their decagonal bases, matching the pentagonal faces. A 36-degree rotation of one of the halves before the joining yields a pentagonal gyrocupolarotunda ({{math|J{{sub|33}}}}).
{{Johnson solid}}
Formulae
References
{{Reflist}}
External links
- {{MathWorld2|title2=Johnson solid|urlname2=JohnsonSolid| urlname=PentagonalOrthocupolarotunda | title=Pentagonal orthocupolarotunda}}
{{Johnson solids navigator}}
{{Polyhedron-stub}}