phosphanide
{{Chembox
|Section1={{Chembox Identifiers
| CASNo =
| ChEBI = 29938
| ChemSpiderID = 56490
| DTXSID = DTXSID30936328
| Gmelin = 284
| PubChem = 62746
| StdInChI=1S/H2P/h1H2/q-1
| StdInChIKey= JZWFHNVJSWEXLH-UHFFFAOYSA-N
| SMILES = [H][P-][H]
}}
|Section2={{Chembox Properties
|P=1|H=2|Formula_Charge = −
}}
}}
Phosphanides are chemicals containing the [PH2]− anion. This is also known as the phosphino anion or phosphido ligand. The IUPAC name can also be dihydridophosphate(1−).Red Book
It can occur as a group phosphanyl -PH2 in organic compounds or ligand called phosphanido, or dihydridophosphato(1−). A related substance has PH2−. Phosphinidene (PH) has phosphorus in a −1 oxidation state.{{cite journal |last1=Stafford |first1=Hannah |last2=Rookes |first2=Thomas M. |last3=Wildman |first3=Elizabeth P. |last4=Balázs |first4=Gábor |last5=Wooles |first5=Ashley J. |last6=Scheer |first6=Manfred |last7=Liddle |first7=Stephen T. |title=Terminal Parent Phosphanide and Phosphinidene Complexes of Zirconium(IV) |journal=Angewandte Chemie International Edition |date=19 June 2017 |volume=56 |issue=26 |pages=7669–7673 |doi=10.1002/anie.201703870|pmid=28489308 |pmc=5575506 }}
As a ligand PH2 can either bond to one atom or be in a μ2-bridged ligand across two metal atoms.{{cite thesis |last1=Hendrikus |first1=Hendriksen, Coenradus Johannes |title=Alkoxide packaged sodium dihydrogenphosphide: synthesis and reactivity |date=2012 |publisher=ETH Zurich |doi=10.3929/ethz-a-007333135 |hdl=20.500.11850/153552 }} With transition metals and actinides, bridging is likely unless the metal atom is mostly enclosed in a ligand.
In phosphanides, phosphorus is in the −3 oxidation state. When phosphanide is oxidised, the first step is phosphinite ([H2PO]−). Further oxidation yields phosphonite ([HPO2]2−) and phosphite ([PO3]3−).{{Cite journal |last1=Westerhausen |first1=Matthias |last2=Krieck |first2=Sven |last3=Langer |first3=Jens |last4=Al-Shboul |first4=Tareq M.A. |last5=Görls |first5=Helmar |date=March 2013 |title=Phosphanides of calcium and their oxidation products |journal=Coordination Chemistry Reviews |volume=257 |issue=5–6 |pages=1049–1066 |doi=10.1016/j.ccr.2012.06.018 }}
The study of phosphine derivatives is unpopular, because they are unstable, poisonous and malodorous.{{cite thesis |last1=Han |first1=Yong-Shen |title=Chemical Transformations of Phosphine and Phosphido Ruthenium Complexes |date=2020 |doi=10.25911/5f6b247b7012f |hdl=1885/209941 }}
Formation
Alkali metal phosphanides can be made from phosphine and the metal dissolved in liquid ammonia. Sodium phosphanide can also be made from phosphine and triphenylmethyl sodium. Lithium phospahnide can be made from phosphine and butyl lithium or phenyl lithium.
Another way to produce -PH2 complexes is by hydrolysis of a -P(SiMe3)2 compound with an alcohol, such as methanol.
Yet another way is to remove a hydrogen atom from the phosphine in a phosphine complex by using a strong base.
Properties
When calcium phosphanide is heated, it decomposes by releasing phosphine and yielding the phosphanediide: CaPH. With further heating a binary calcium phosphide is formed. Other compounds may also lose hydrogen as well as phosphine.{{Cite journal |last1=Mont |first1=O. Schmitz-Du |last2=Nagel |first2=F. |last3=Schaal |first3=W. |date=1958-02-21 |title=Über einfache und komplexe Schwermetallphosphine und Polyphosphine |journal=Angewandte Chemie |language=de |volume=70 |issue=4 |pages=105 |doi=10.1002/ange.19580700407}}
Phosphanides can react with CCl4 to substitute Cl for H giving a -PCl2 compound. Similarly CBr4 can produce -PBr2. Also AgBF4 can react to yield -PF2.{{Cite journal |last1=Schäfer |first1=H. |last2=Zipfel |first2=J. |last3=Gutekunst |first3=B. |last4=Lemmert |first4=U. |date=October 1985 |title=Übergangsmetallphosphidokomplexe, IX. P-funktionelle Heterocyclische Mangan-Phosphor-Vier- und Sechsringkomplexe |journal=Zeitschrift für anorganische und allgemeine Chemie |language=de |volume=529 |issue=10 |pages=157–172 |doi=10.1002/zaac.19855291021 }}
Sodium phosphanide can react with ethyl alcohol in a diethyl carbonate solution to yield sodium 2-phosphaethynolate (NaOCP). Na(DME)2OCP is also formed from NaPH2 when reacted with CO in a dimethoxyethane (DME) solution under pressure.{{cite thesis |last1=Kosnik |first1=Stephanie |title=Building New Low Valent Phosphorus Molecules by P Transfer |date=2017 |url=https://scholar.uwindsor.ca/etd/7367/ }}
List
class="wikitable"
!name !formula !system !unit cell Å !volume !density !M-P Å !comment !ref |
lithium phosphanide
|LiPH2 | | | | | | | | |
Bis(1,2-dimethoxyethane-O,O′)lithium-phosphanide
|(dme)2LiPH2 |monoclinic | |a=13.911 b=8.098 c=12.491 β=103.35° |1371.9 |1.07 | | |
|Li(PH2)(BEt3)2
| | | | | | | |
|LiPH2(BH3)2(THF)2
| | | | | | | |
sodium dihydrogenphosphide
|NaPH2 | | | | | | | |
|Na13(PH2)(OtBu)12
| | | | | | | |
tetraphosphanylsilane
|Si(PH2)4 | | | | | | | |
|KPH2
| | | | | | | |
|Ca(PH2)2•6NH3
| | | | | | | |
|Ca(PH2)2•2NH3
| | | | | | | |
|Cp2(CO)4Cr2(μ-PH2)(μ-H)
| | | | | | | |
|Cp2(CO)4Cr2(μ-PH2)2
| | | | | | | |
|[(CO)4Cr(μ-PH2)]2
|orthorhombic |Cmca |a =12.2545 b =11.5949 c=9.7196 | | | | |
|(CO)4Cr(μ-PH2)2Cr(CO)3(PH3)
|triclinic |P{{overbar|1}} |a=7.008 b=7.430 c=8.871, α =111.05° β=92.73° γ=114.08° | | | | |
|Mn(PH2)2 · 3 NH3
| | | | | | | |
|K2[Mn(PH2)4] · 2 NH3
| | | | | | | |
|[(CO)4MnPH2]2
|triclinic |P{{overbar|1}} |a = 6.804, b = 7.064, c = 9.191, α =110.5°, β = 91.92°, γ =115.65°, Z = 1 | | | | |{{Cite journal |last1=Deppisch |first1=Bertold |last2=Schäfer |first2=Hans |last3=Binder |first3=Dieter |last4=Leske |first4=Werner |date=December 1984 |title=Übergangsmetallphosphidokomplexe. VIII. Strukturuntersuchungen an Übergangsmetallphosphor-Vier- und Sechsringkomplexen. Die Strukturen von [(CO)4MnPH2]2, [(CO)4MnPH2]3 und [cpNiPH2]3 |journal=Zeitschrift für anorganische und allgemeine Chemie |language=de |volume=519 |issue=12 |pages=53–66 |doi=10.1002/zaac.19845191206 }} |
|(μ-PH2)2 · Mn2(CO8) + (μ-Br)(μ-PH2)Mn2(CO8)
|monoclinic |P21/c |a = 9.467, b = 12.181, c = 13.086, β = 109.98° |1418.2 | | | |
|[(CO)4MnPH2]3
|monoclinic |P2/n |a = 9.052, b = 9.748, c = 12.642, β = 109.1°, Z = 2 | | | | |
|(μ-Br)(μ-PH2)Mn2(CO8)
| | | | | | | |
|[(CO)3Fe(μ-PH2)]2
|monoclinic |P21/m |a =6.2476 b =12.982 c =7.2193 β =90.14° | | | | |
|Cp(CO)2Fe(μ-PH2)Fe(CO)4
| | | | | | | |
bis((ethane-1,2-diyl)bis(dimethylphosphine))-(hydrido)-(dihydridophosphide)-iron
|Fe(dmpe)2(H)PH2 |triclinic |P{{overbar|1}} |a=9.2246 b=12.4638 c=17.3198 α=89.872° β=88.482° γ=89.228° | | | | |
|Co(PH2)3
| | | | | | | |
|KCo2(PH2)7
| | | | | | | |
|cp(CO)2Fe(μ-PH2)Fe(CO)4
|monoclinic |P21/c |a = 7.336, b = 10.898, c = 17.616, β = 99.65°, Z = 4 | | |2.29, 2.265 | |
|cp(CO)2Fe(μ-PH2)Fe(CO)(NO)2
| | | | | | | |
|cp(CO)2Fe(μ-PH2)Vcp(CO)3
| | | | | | | |
|cp(CO)2Fe(μ-PH2)Crcp(CO)(NO)
| | | | | | | |
|cp(CO)2Fe(μ-PH2)Cr(CO)5
| | | | | | | |
|cp(CO)Fe(μ-CO, μ-PH2)Crcp(NO)
| | | | | | | |
|cp(CO)2Fe(μ-PH2)MnMecp(CO)2
|monoclinic |P21 |a = 7.501, b = 22.345, c = 9.741, β = 106.23°, Z = 4 | | | | |{{Cite journal |last1=Schäfer |first1=H. |last2=Leske |first2=W. |last3=Mattern |first3=G. |date=February 1988 |title=Übergangsmetallphosphidokomplexe. XVI. Die Strukturen von zwei offenkettigen, PH2-verbrückten Zweikernkomplexen cp(CO)2Fe(mu-PH2)MLn (MLn = Fe(CO)4, MnMecp(CO)2) |journal=Zeitschrift für anorganische und allgemeine Chemie |language=de |volume=557 |issue=1 |pages=59–68 |doi=10.1002/zaac.19885570106 }} |
|cp(CO)2Fe(μ-PH2)Mn(NO)3
| | | | | | | |
|cp(CO)2Fe(μ-PH2)Mncp(CO)2
| | | | | | | |
|cp(CO)Fe(μ-CO, μ-PH2)Mncp(CO)
| | | | | | | |
|cp(CO)Fe(μ-CO, μ-PH2)MnMecp(CO)
| | | | | | | |
(μ2-phosphido)-octacarbonyl-iron-manganese
|FeMn(CO)8(μ-PH2) |triclinic |P{{overbar|1}} |a=7.8647 b=9.223 c=9.368, α=90.966° β=91.141° γ=110.032° | | | | |
|Li+[FeMn(CO)8(μ3-PH)Mn(CO)4(μ-PH2)Fe(CO)4]−
| | | | | | | |
|Na+[FeMn(CO)8(μ3-PH)Mn(CO)4(μ-PH2)Fe(CO)4]−
| | | | | | | |
|K+[FeMn(CO)8(μ3-PH)Mn(CO)4(μ-PH2)Fe(CO)4]−
| | | | | | | |
|cp(CO)2Fe(μ-PH2)Co(CO)2(NO)
| | | | | | | |
|Ni(PH2)2
| | | | | | | |{{Cite journal |last1=Schmitz-DuMont |first1=O. |last2=Uecker |first2=G. |last3=Schaal |first3=W. |date=October 1969 |title=Dihydrogenphosphide und Dihydrogenphosphidosalze der Übergangsmetalle. I. Nickel(II)-dihydrogenphosphid und Kalium-tris-[dihydrogen-phosphido]-niccolat (II) |journal=Zeitschrift für anorganische und allgemeine Chemie |language=de |volume=370 |issue=1–2 |pages=67–79 |doi=10.1002/zaac.19693700108 }} |
|[cpNiPH2]2
| | | | | | | |
|[cpNiPH2]3
|rhombohedral |R3 |a = 16.861, c = 5.611 Z = 3 | | | |6 member ring |{{Cite journal |last=Schäfer |first=H. |date=December 1979 |title=Übergangsmetallphosphidokomplexe. II. Phosphido- und Bistrimethylsilylphosphidokomplexe des Nickels |journal=Zeitschrift für anorganische und allgemeine Chemie |language=de |volume=459 |issue=1 |pages=157–169 |doi=10.1002/zaac.19794590117 }} |
|K[Ni(PH2)3]
| | | | | | |orange, green or black |
|cp(CO)2Fe(μ-PH2)Ni(CO)3
| | | | | | | |
|CH{(CMe)(2,6-iPr2C6H3N)}2GeIIPH2
|monoclinic |P21/c |a=14.1380 b=16.3244 c=13.8086 β=116.379 Z=4 |2855.1 |1.213 | |orange or red |
|[CH{(CMe)(2,6-iPr2C6H3N)}2GeIIP(H)]2
|triclinic |P{{overbar|1}} |a=10.8175 b=12.0783 c=2.6434 α=91.550 β=108.361 γ=111.339 Z=1 |1441.49 |1.203 | |red |
bisphosphanyl yttriate
|[(Me3Si)2Cp]2Y(PH2)2[Li(TMEDA)]2Cl | | | | | | | |
(N,N',N |Zr(TrenDMBS)(PH2) TrenDMBS=N(CH2CH2NSiMe2But)3 |orthorhombic |Pbca |a=19.978 b=15.4052 c=22.721 | | |Zr−P=2.690 |yellow |
|{Cp(CO)2Mo}2(μ-PH2)(μ-H)
| | | | | | | |{{Cite journal |last1=Vogel |first1=Ulf |last2=Sekar |first2=Perumal |last3=Ahlrichs |first3=Reinhart |last4=Huniar |first4=Uwe |last5=Scheer |first5=Manfred |date=April 2003 |title=An Unusual Bonding Situation in a Novel Au I -Phosphido Complex with a Planar Au 3 P 3 Framework |journal=European Journal of Inorganic Chemistry |volume=2003 |issue=8 |pages=1518–2522 |doi=10.1002/ejic.200390197 }}{{Cite journal |last1=Ebsworth |first1=E.A.V. |last2=McIntosh |first2=A.P. |last3=Schröder |first3=M. |date=September 1986 |title=Polynuclear metal complexes incorporating hydrido-phosphido ligands |journal=Journal of Organometallic Chemistry |volume=312 |issue=2 |pages=c41–c43 |doi=10.1016/0022-328X(86)80309-6 }} |
|Mo2Cp2(μ-PH2)2(CO)2
| | | | | | | |
|cp(CO)2Fe(μ-PH2)Mo(CO)5
| | | | | | | |
|{Cp(CO)2W}2(μ-PH2)(μ-H)
| | | | | | | |
|W2Cp2(μ-PH2)2(CO)2
| | | | | | | |
|[(CO)4W(μ-PH2)]2
|orthorhombic |Cmca |a=12.498 b=12.046 c=10.1185 | | | | |
|[(CO)5W(μ-PH2)]2−
| | | | | | | |
|(CO)4W(μ-PH2)2W(CO)3(PH3)
| | |a=7.008 b=7.430 c=8.871, α =111.05° β =92.73° γ=114.08° | | | | |
|(CO)4W(μ-PH2)2W(CO)2(PH3)2
|triclinic |P{{overbar|1}} |a=7.014 b=9.386 c=13.632, α=70.15° β=79.82° γ=68.78° | | | | |
|NMe3•H2BPH2••W(CO)5
| | | | | | | |
phosphanylalane
|NMe3•H2AlPH2•W(CO)5 | | | | | | | |
|cp(CO)2Fe(μ-PH2)W(CO)5
| | | | | | | |
phosphanygallane
|NMe3•H2GaPH2••W(CO)5 | | | | | | | |
|Re2(μ-PH2)2(CO)8
|monoclinic |P21/c |a=9.808 b=12.326 c=13.299 β=109.08° Z=4 |1519.4 |2.896 | |yellow |
|Re2(μ-H) · (μ-PH2)(CO)8
| | | | | | |yellow |
|Os(η2-O2CCH3)(PH2)(CO)(PPh3)2
| | | | | | | |
|Os(η2-N,N-dimethyldithiocarbamate)(PH2)(CO)(PPh3)2
| | | | | | | |
|Os(η2-acetylacetonate)(PH2)(CO)(PPh3)2
| | | | | | | |
|Os(η2-NO2)(PH2)(CO)(PPh3)2
| | | | | | | |
|OsCl- (PH2)(CO)2(PPh3)2
| | | | | | | |
|OsCl- (PH2)(CO)(PPh3)3
| | | | | | | |
|[Os(μ2-PH2)Cl(CO)(PPh3)2]2
|triclinic |P1 |a 14.101, b 15.091, c 11.708, α 96.68, β 91.71, γ 63.92°, Z = 1 |2222.0 | | | |
|OsH(PH2)(CO)2(PPh3)2
| | | | | | | |
(μ2-Hydrido)-(μ2-phosphido)-acetonitrilo-henicosacarbonyl-hexa-osmium
|Os6(μ-H)(CO)21(NCMe)(μ-PH2) |monoclinic |P21/n |a=11.161 b=12.532 c =26.60, β=90.03° | | | | |
(μ2-Phosphido)-(μ2-hydrido)-bis(undecacarbonyl-tri-osmium)
|Os6(μ-H)(CO)22(μ-PH2) |monoclinic |P21/c |a =14.328 b =16.658 c =15.258, β =103.79° | | | | |{{Cite journal |last1=Johnson |first1=Brian F. G. |last2=Lewis |first2=Jack |last3=Nordlander |first3=Ebbe |last4=Owen |first4=Steven M. |last5=Raithby |first5=Paul R. |date=1996 |title=Systematic synthesis of hexanuclear phosphido-bridged osmium clusters; crystal and molecular structure of [Os 6 (µ-H)(CO) 22 (µ-PH 2 )] |journal=J. Chem. Soc., Dalton Trans. |issue=8 |pages=1567–1571 |doi=10.1039/DT9960001567 }} |
|Os6(μ-H)(CO)21(CNBut)(μ-PH2)
| | | | | | | |
|[Os6(μ-H)(CO)20{P(OMe)3}2(μ-PH2)]3
| | | | | | | |
|Ir(CO)ClH(PEt3)2(PH2)
| | | | | | | |
|Ir(CO)BrH(PEt3)2(PH2)
| | | | | | | |
(Acetato-O,O')-(μ2-phosphonito)-carbonyl-iodo-bis(triphenylphosphine)-gold-osmium dichloromethane solvate
|Os(η2-O2CCH3)(PH2AuI)(CO)(PPh3)2 · (CH2Cl2)2 |triclinic |P{{overbar|1}} |a=12.320 b=13.962 c=14.122, α=96.76° β=101.93° γ=107.72° | | | | |
phosphanido-(N'-(triisopropylsilyl)-N,N-bis(2-((triisopropylsilyl)amino)ethyl)ethane-1,2-diaminato)-thorium(iv)
|Th(TrenTIPS)(PH2) |monoclinic |P21/n |a=18.6189 b=22.6046 c=22.2818 β=113.726° | | |2.982 |colourless |
|PH2–UH
| | | | | |2.762 |in solid argon |
TrenTIPS=N(CH2CH2NSiPri3)3
|U(TrenTIPS)(PH2) |monoclinic |P21/n |a=12.9994 b=16.2006 c=20.3678 β=91.313 Z=4 |4288.3 | |2.883 |yellow |
Derivatives
Some derivatives of phosphanides have also been studied where hydrogen is substituted by another group. They include bis(trimethylsilyl)phosphanide, bis (triisopropylsilyl) phosphanide, bis (trimethylsilyl) phosphanide, diphenyl phosphanide.{{cite journal |last1=Driess |first1=Matthias |last2=Pritzkow |first2=Hans |last3=Skipinski |first3=Markus |last4=Winkler |first4=Uwe |title=Intriguing Tetrasodium Dication Cluster Na 4 2+ Stabilized between Two Silyl(fluorosilyl)phosphanide Shells |journal=Journal of the American Chemical Society |date=1 October 1998 |volume=120 |issue=41 |pages=10774–10775 |doi=10.1021/ja9822963}}{{cite book |series=Advances in Inorganic Chemistry |volume=50|title=Main Chemistry Group |author=A. G. Sykes|date=19 April 2000 |publisher=Elsevier |isbn=978-0-08-049365-7 |page=246 |url=https://books.google.com/books?id=WYQeEQYse5oC&pg=PA410 |language=en}}