piceatannol
{{chembox
| Verifiedfields = changed
| Watchedfields = changed
| verifiedrevid = 440126930
| ImageFile = Piceatannol.svg
| ImageSize = 200px
| PIN = 4-[(E)-2-(3,5-Dihydroxyphenyl)ethen-1-yl]benzene-1,2-diol
| OtherNames = 3',4',3,5-Tetrahydroxy-trans-stilbene
Astringinin
|Section1={{Chembox Identifiers
| CASNo_Ref = {{cascite|correct|??}}
| CASNo = 10083-24-6
| UNII_Ref = {{fdacite|changed|FDA}}
| UNII = 6KS3LS0D4F
| PubChem = 667639
| ChEBI_Ref = {{ebicite|changed|EBI}}
| ChEBI = 28814
| SMILES = C1=CC(=C(C=C1C=CC2=CC(=CC(=C2)O)O)O)O
| ChemSpiderID_Ref = {{chemspidercite|changed|chemspider}}
| ChemSpiderID = 581006
| InChI = 1/C14H12O4/c15-11-5-10(6-12(16)8-11)2-1-9-3-4-13(17)14(18)7-9/h1-8,15-18H/b2-1+
| InChIKey = CDRPUGZCRXZLFL-OWOJBTEDBC
| StdInChI_Ref = {{stdinchicite|changed|chemspider}}
| StdInChI = 1S/C14H12O4/c15-11-5-10(6-12(16)8-11)2-1-9-3-4-13(17)14(18)7-9/h1-8,15-18H/b2-1+
| StdInChIKey_Ref = {{stdinchicite|changed|chemspider}}
| StdInChIKey = CDRPUGZCRXZLFL-OWOJBTEDSA-N
}}
|Section2={{Chembox Properties
| C=14 | H=12 | O=4
| Appearance = white solid
| Density =
| MeltingPtC =215-217
| BoilingPt =
| Solubility =
}}
|Section3={{Chembox Hazards
| MainHazards=
| FlashPt=
| AutoignitionPt =
}}
}}
Piceatannol is the organic compound with the formula {{chem2|((HO)2C6H3)2CH)2}}. Classified as a stilbenoid and a phenol, it is a white solid, although samples often are yellow owing to impurities.
Natural occurrences
Piceatannol and its glucoside, astringin, are found in mycorrhizal and non-mycorrhizal roots of Norway spruces (Picea abies).{{Cite journal | doi = 10.1007/BF00239996 | title = Phenolics of mycorrhizas and non-mycorrhizal roots of Norway spruce | year = 1990 | last1 = Münzenberger | first1 = Babette | last2 = Heilemann | first2 = Jürgen | last3 = Strack | first3 = Dieter | last4 = Kottke | first4 = Ingrid | last5 = Oberwinkler | first5 = Franz | journal = Planta | volume = 182 | issue = 1 | pmid=24197010 | pages=142–8| s2cid = 43504838 }} It can also be found in the seeds of the palm Aiphanes horrida{{cite journal | pmid = 11440571 | year = 2001 | last1 = Lee | first1 = D | last2 = Cuendet | first2 = M | last3 = Vigo | first3 = JS | last4 = Graham | first4 = JG | last5 = Cabieses | first5 = F | last6 = Fong | first6 = HH | last7 = Pezzuto | first7 = JM | last8 = Kinghorn | first8 = AD | title = A novel cyclooxygenase-inhibitory stilbenolignan from the seeds of Aiphanes aculeata | volume = 3 | issue = 14 | pages = 2169–71 | journal = Organic Letters | doi=10.1021/ol015985j}} and in Gnetum cleistostachyum.{{cite journal | doi = 10.1080/10286020310001625102 | pmid = 15621615 | title = Stilbene derivatives from Gnetum cleistostachyum | year = 2005 | last1 = Yao | first1 = Chun-Suo | last2 = Lin | first2 = Mao | last3 = Liu | first3 = Xin | last4 = Wang | first4 = Ying-Hong | journal = Journal of Asian Natural Products Research | volume = 7 | issue = 2 | pages = 131–7| s2cid = 37661785 }} The chemical structure of piceatannol was established by Cunningham et al. as being an analog of resveratrol.{{cite journal | doi = 10.1039/JR9630002875 | title = 535. The constitution of piceatannol | year = 1963 | last1 = Cunningham | first1 = Jill | last2 = Haslam | first2 = E. | last3 = Haworth | first3 = R. D. | journal = Journal of the Chemical Society (Resumed) | pages = 2875}}
= In food =
Piceatannol is a metabolite of resveratrol found in red wine, grapes, passion fruit, white tea, and Japanese knotweed.{{cite journal| author=Piotrowska H, Kucinska M, Murias M| title=Biological activity of piceatannol: leaving the shadow of resveratrol. | journal=Mutat Res | year= 2012 | volume= 750 | issue= 1 | pages= 60–82 | pmid=22108298 | doi=10.1016/j.mrrev.2011.11.001 | url=https://pubmed.ncbi.nlm.nih.gov/22108298 }} Astringin, a piceatannol glucoside, is also found in red wine. The formation of piceatannol from resveratrol is catalyzed by cytochrome P450.{{cite journal |doi=10.1016/j.fct.2018.07.050|title=Formation and biological targets of botanical o-quinones |year=2018 |last1=Bolton |first1=Judy L. |last2=Dunlap |first2=Tareisha L. |last3=Dietz |first3=Birgit M. |journal=Food and Chemical Toxicology |volume=120 |pages=700–707 |pmid=30063944 |pmc=6643002 |s2cid=51887182 |doi-access=free }}
Biochemical study
A 1989 in vitro study found that piceatannol blocked LMP2A, a viral protein-tyrosine kinase implicated in leukemia, non-Hodgkin's lymphoma and other diseases associated with Epstein–Barr virus.{{cite journal |vauthors=Geahlen RL, McLaughlin JL |title=Piceatannol (3,4,3',5'-tetrahydroxy-trans-stilbene) is a naturally occurring protein-tyrosine kinase inhibitor |journal=Biochem. Biophys. Res. Commun. |volume=165 |issue=1 |pages=241–5 |year=1989 |pmid=2590224 |doi=10.1016/0006-291X(89)91060-7}} In 2003, this prompted research interest in piceatannol and its effect on these diseases.{{cite journal |vauthors =Swanson-Mungerson M, Ikeda M, Lev L, Longnecker R, Portis T |title=Identification of latent membrane protein 2A (LMP2A) specific targets for treatment and eradication of Epstein-Barr virus (EBV)-associated diseases |journal=J. Antimicrob. Chemother. |volume=52 |issue=2 |pages=152–4 |year=2003 |pmid=12837743 |doi=10.1093/jac/dkg306|doi-access= }}
Injected in rats, piceatannol shows a rapid glucuronidation and a poor bioavailability, according to a 2006 study.{{cite journal | doi = 10.1211/jpp.58.11.0004 | title = Pharmacokinetics of selected stilbenes: Rhapontigenin, piceatannol and pinosylvin in rats | year = 2006 | last1 = Roupe | first1 = Kathryn A. | last2 = Yáñez | first2 = Jaime A. | last3 = Teng | first3 = Xiao Wei | last4 = Davies | first4 = Neal M. | journal = Journal of Pharmacy and Pharmacology | volume = 58 | issue = 11 | pages = 1443–50 | pmid = 17132206| s2cid = 9538085 | doi-access = free }}
Piceatannol affect gene expressions, gene functions and insulin action, resulting in the delay or complete inhibition of adipogenesis.{{Cite journal | doi = 10.1074/jbc.M111.259721 | title = Piceatannol, Natural Polyphenolic Stilbene, Inhibits Adipogenesis via Modulation of Mitotic Clonal Expansion and Insulin Receptor-dependent Insulin Signaling in Early Phase of Differentiation | year = 2012 | last1 = Kwon | first1 = J. Y. | last2 = Seo | first2 = S. G. | last3 = Heo | first3 = Y.-S. | last4 = Yue | first4 = S. | last5 = Cheng | first5 = J.-X. | last6 = Lee | first6 = K. W. | last7 = Kim | first7 = K.-H. | journal = Journal of Biological Chemistry | volume = 287 | issue = 14 | pages = 11566–78 | pmid = 22298784 | pmc = 3322826| doi-access = free }}{{cite web |title= Potential Method to Control Obesity: Red Wine, Fruit Compound Could Help Block Fat Cell Formation |url= https://www.sciencedaily.com/releases/2012/04/120404125355.htm | date= April 4, 2012| publisher= Science Daily | access-date=2012-04-05}}
Passion fruit seeds are rich in piceatannol and scirpusin B (dimer of piceatannol) as polyphenols, both of which have been reported to have vasodilating effects in the thoracic aorta and coronary artery of rats.{{cite journal | pmid = 34498252| date = 2021| last1 = Matsumoto| first1 = Y.| last2 = Katano| first2 = Y.| title = Cardiovascular Protective Effects of Polyphenols Contained in Passion Fruit Seeds Namely Piceatannol and Scirpusin B: A Review| journal = The Tokai Journal of Experimental and Clinical Medicine| volume = 46| issue = 3| pages = 151–161}} Furthermore, these polyphenols did not increase heart rate (i.e., these polyphenols did not increase oxygen consumption).
See also
References
{{reflist}}
Further reading
- {{cite journal|last1=Piotrowska|first1=Hanna|last2=Kucinska|first2=Malgorzata|last3=Murias|first3=Marek|title=Biological activity of piceatannol: Leaving the shadow of resveratrol|journal=Mutation Research/Reviews in Mutation Research|volume=750|issue=1|year=2012|pages=60–82|issn=1383-5742|doi=10.1016/j.mrrev.2011.11.001|pmid=22108298|type=review}}
{{Stilbenes}}