plethystic logarithm

{{merge to|Plethystic exponential|date=April 2025|discuss=Talk:Plethystic logarithm#Feedback from New Page Review process}}

{{notability|date=April 2025}}

{{Short description|Inverse of the plethystic exponential}}

The plethystic logarithm is an operator which is the inverse of the plethystic exponential.

== Definition ==

The plethystic logarithm takes in a function with n complex arguments, f(t_1, t_2, \cdots, t_n), which must equal one at the origin, and is given by{{Cite journal|last1=Benvenuiti |first1=Sergio |last2=Feng |first2=Bo | last3=Hanany | first3=Amihay | last4=He | first4=Yang-Hui |year=2006 |title=Counting BPS Operators in Gauge Theories |page=31 |arxiv= hep-th/0608050v2|quote= |mode= |journal= Journal of High Energy Physics|doi=10.1088/1126-6708/2007/11/050 }}

:\mathrm{PL}[f(t_1, t_2, \cdots, t_n)] = \sum_{k=1}^{\infty} \frac{\mu(k)}{k} \text{ln}(f(t_1^k, t_2^k, \cdots, t_n^k))

where \mu(k) is the Möbius function and is defined by {{sfn|Abramowitz|Stegun|1972|p=826}}

:\mu(k) =

\begin{cases}

1 & \text{if } k = 1 \\

(-1)^n & \text{if } k \text{ is the product of } n \text{ distinct primes} \\

0 & \text{otherwise}

\end{cases}

and \text{ln}(f(t_1^k, t_2^k, \cdots, t_n^k)) is the natural logarithm of the initial function with every argument raised to the power of k.

Applications in theoretical physics

The plethystic logarithm has a few applications in theoretical physics, particularly within the study of gauge theories.

{{Cite journal|last1=Feng|first1=Bo|last2=Hanany|first2=Amihay|last3=He|first3=Yang-Hui|date=2007-03-20|title=Counting gauge invariants: the plethystic program|url=http://stacks.iop.org/1126-6708/2007/i=03/a=090?key=crossref.bcaed087696ada7ddb3caa309da4f9f7|journal=Journal of High Energy Physics|volume=2007|issue=3|pages=090|doi=10.1088/1126-6708/2007/03/090|arxiv=hep-th/0701063 |bibcode=2007JHEP...03..090F |s2cid=1908174 |issn=1029-8479}}

References

{{reflist}}

Sources

  • {{Cite book |last1=Abramowitz |first1=Milton |title=Handbook of mathematical functions: with formulas, graphs and mathematical tables [conference under the auspices of the National science foundation and the Massachusetts institute of technology] |last2=Stegun |first2=Irene A. |date=1972 |publisher=Dover |isbn=978-0-486-61272-0 |series=Dover books on advanced mathematics |location=New York |orig-year=1964}}

Category:Generating functions

{{Math-stub}}

{{Math-physics-stub}}