polar sine

In geometry, the polar sine generalizes the sine function of angle to the vertex angle of a polytope. It is denoted by psin.

Definition

= ''n'' vectors in ''n''-dimensional space =

File:3dvol.svg volumes for left: a parallelepiped (Ω in polar sine definition) and right: a cuboid (Π in definition). The interpretation is similar in higher dimensions.]]

Let v1, ..., vn (n ≥ 1) be non-zero Euclidean vectors in n-dimensional space (Rn) that are directed from a vertex of a parallelotope, forming the edges of the parallelotope. The polar sine of the vertex angle is:

: \operatorname{psin}(\mathbf{v}_1,\dots,\mathbf{v}_n) = \frac{\Omega}{\Pi},

where the numerator is the determinant

:\begin{align}

\Omega & = \det\begin{bmatrix}\mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} =

\begin{vmatrix}

v_{11} & v_{21} & \cdots & v_{n1} \\

v_{12} & v_{22} & \cdots & v_{n2} \\

\vdots & \vdots & \ddots & \vdots \\

v_{1n} & v_{2n} & \cdots & v_{nn} \\

\end{vmatrix}

\end{align}\,,

which equals the signed hypervolume of the parallelotope with vector edges{{cite journal| doi=10.1016/j.jat.2008.03.005 | volume=156 | title= On d-dimensional d-semimetrics and simplex-type inequalities for high-dimensional sine functions | year=2009 | journal=Journal of Approximation Theory | pages=52–81 | last1 = Lerman | first1 = Gilad | last2 = Whitehouse | first2 = J. Tyler| arxiv=0805.1430 | s2cid=12794652 }}

: \begin{align}

\mathbf{v}_1 &= (v_{11}, v_{12}, \dots, v_{1n})^T \\

\mathbf{v}_2 &= (v_{21}, v_{22}, \dots, v_{2n})^T \\

& \,\,\,\vdots \\

\mathbf{v}_n &= (v_{n1}, v_{n2}, \dots, v_{nn})^T\,, \\

\end{align}

and where the denominator is the n-fold product

:\Pi = \prod_{i=1}^n \|\mathbf{v}_i\|

of the magnitudes of the vectors, which equals the hypervolume of the n-dimensional hyperrectangle with edges equal to the magnitudes of the vectors ||v1||, ||v2||, ... ||vn|| rather than the vectors themselves. Also see Ericksson.{{cite journal | last1 = Eriksson | first1 = F | year = 1978 | title = The Law of Sines for Tetrahedra and n-Simplices | journal = Geometriae Dedicata | volume = 7 | pages = 71–80 | doi=10.1007/bf00181352| s2cid = 120391200 }}

The parallelotope is like a "squashed hyperrectangle", so it has less hypervolume than the hyperrectangle, meaning (see image for the 3d case):

:|\Omega| \leq \Pi \implies \frac

\Omega
{\Pi} \leq 1 \implies -1 \leq \operatorname{psin}(\mathbf{v}_1,\dots,\mathbf{v}_n) \leq 1\,,

as for the ordinary sine, with either bound being reached only in the case that all vectors are mutually orthogonal.

In the case n = 2, the polar sine is the ordinary sine of the angle between the two vectors.

= In higher dimensions=

A non-negative version of the polar sine that works in any {{math|m}}-dimensional space can be defined using the Gram determinant. It is a ratio where the denominator is as described above. The numerator is

:

|\Omega| = \sqrt{\det \left(\begin{bmatrix}\mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix}^T

\begin{bmatrix}\mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} \right)} \,,

where the superscript T indicates matrix transposition. This can be nonzero only if {{math|mn}}. In the case m = n, this is equivalent to the absolute value of the definition given previously. In the degenerate case {{math|m < n}}, the determinant will be of a singular {{math|n × n}} matrix, giving {{math|1=Ω = 0}} and {{math|1=psin = 0}}, because it is not possible to have {{mvar|n}} linearly independent vectors in {{mvar|m}}-dimensional space when {{math|m < n}}.

Properties

=Interchange of vectors=

The polar sine changes sign whenever two vectors are interchanged, due to the antisymmetry of row-exchanging in the determinant; however, its absolute value will remain unchanged.

:\begin{align}

\Omega & = \det\begin{bmatrix}\mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_i & \cdots & \mathbf{v}_j & \cdots & \mathbf{v}_n \end{bmatrix} \\

& = -\!\det\begin{bmatrix}\mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_j & \cdots & \mathbf{v}_i & \cdots & \mathbf{v}_n \end{bmatrix} \\

& = -\Omega

\end{align}

=Invariance under scalar multiplication of vectors=

The polar sine does not change if all of the vectors v1, ..., vn are scalar-multiplied by positive constants ci, due to factorization

: \begin{align}

\operatorname{psin}(c_1 \mathbf{v}_1,\dots, c_n \mathbf{v}_n) & = \frac{\det\begin{bmatrix}c_1\mathbf{v}_1 & c_2\mathbf{v}_2 & \cdots & c_n\mathbf{v}_n \end{bmatrix}}{\prod_{i=1}^n \|c_i \mathbf{v}_i\|} \\[6pt]

& = \frac{\prod_{i=1}^n c_i}{\prod_{i=1}^n |c_i|} \cdot \frac{\det\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix}}{\prod_{i=1}^n \|\mathbf{v}_i\|} \\[6pt]

& = \operatorname{psin}(\mathbf{v}_1,\dots, \mathbf{v}_n).

\end{align}

If an odd number of these constants are instead negative, then the sign of the polar sine will change; however, its absolute value will remain unchanged.

=Vanishes with linear dependencies=

If the vectors are not linearly independent, the polar sine will be zero. This will always be so in the degenerate case that the number of dimensions {{math|m}} is strictly less than the number of vectors {{math|n}}.

=Relationship to pairwise cosines=

The cosine of the angle between two non-zero vectors is given by

:\cos(\mathbf{v}_1, \mathbf{v}_2) = \frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{\|\mathbf{v}_1\| \|\mathbf{v}_2\|}\,

using the dot product. Comparison of this expression to the definition of the absolute value of the polar sine as given above gives:

:\left|\operatorname{psin}(\mathbf{v}_1, \ldots, \mathbf{v}_n)\right|^2

= \det\!\left[\begin{matrix}

1 & \cos(\mathbf{v}_1, \mathbf{v}_2) & \cdots & \cos(\mathbf{v}_1, \mathbf{v}_n) \\

\cos(\mathbf{v}_2, \mathbf{v}_1) & 1 & \cdots & \cos(\mathbf{v}_2, \mathbf{v}_n) \\

\vdots & \vdots & \ddots & \vdots \\

\cos(\mathbf{v}_n, \mathbf{v}_1) & \cos(\mathbf{v}_n, \mathbf{v}_2) & \cdots & 1 \\

\end{matrix}\right].

In particular, for {{math|1=n = 2}}, this is equivalent to

:\sin^2(\mathbf{v}_1, \mathbf{v}_2) = 1 - \cos^2(\mathbf{v}_1, \mathbf{v}_2)\,,

which is the Pythagorean theorem.

History

Polar sines were investigated by Euler in the 18th century.{{cite journal | last1 = Euler | first1 = Leonhard | title = De mensura angulorum solidorum | journal = Leonhardi Euleri Opera Omnia | volume = 26 | pages = 204–223 }}

See also

References