proboscis
{{Short description|Elongated mouth part}}
{{About|the mouth part|the butterfly genus|Proboscis (genus){{!}}Proboscis (genus)|the monkey|Proboscis monkey|anomaly of the human nose|Proboscis (anomaly)}}
File:Eristalinus October 2007-6.jpg using its proboscis to reach the nectar of a flower]]
A proboscis ({{IPAc-en|p|r|oʊ|ˈ|b|ɒ|s|ɪ|s|,_|-|k|ɪ|s}}) is an elongated appendage from the head of an animal, either a vertebrate or an invertebrate. In invertebrates, the term usually refers to tubular mouthparts used for feeding and sucking. In vertebrates, a proboscis is an elongated nose or snout.
Etymology
First attested in English in 1609 from Latin {{lang|la|proboscis}}, the latinisation of the Ancient Greek {{lang|grc|προβοσκίς}} ({{lang|grc-Latn|proboskis}}),[https://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0057%3Aentry%3Dproboski%2Fs προβοσκίς],
Henry George Liddell, Robert S, A Greek–English Lexicon, on Perseus Digital Library which comes from {{lang|grc|πρό}} ({{lang|grc-Latn|pro}}) 'forth, forward, before'[https://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0057%3Aentry%3Dpro%2F πρό], Henry George Liddell, Robert Scott, A Greek–English Lexicon, on Perseus Digital Library + {{lang|grc|βόσκω}} ({{lang|grc-Latn|bosko}}), 'to feed, to nourish'.[https://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0057%3Aentry%3Dbo%2Fskw βόσκω], Henry George Liddell, Robert Scott, A Greek–English Lexicon, on Perseus Digital Library{{OEtymD|proboscis}} The plural as derived from the Greek is {{lang|grc-Latn|proboscides}}, but in English the plural form proboscises occurs frequently.
Invertebrates
The most common usage is to refer to the tubular feeding and sucking organ of certain invertebrates such as insects (e.g., moths, butterflies, and mosquitoes), worms (including Acanthocephala, proboscis worms) and gastropod molluscs.
=Acanthocephala=
File:Parasite140083-fig5 Figs 31-36 Cathayacanthus spinitruncatus.tif
The Acanthocephala, the thorny-headed worms or spiny-headed worms, are characterized by the presence of an eversible proboscis, armed with spines, which they use to pierce and hold the gut wall of their host.
{{clear}}
=Lepidoptera mouth parts=
File:Convolvulus hawk-moth (Agrius convolvuli) 2.jpg (Agrius convolvuli) feeding with extended proboscis]]
The mouth parts of Lepidoptera (butterflies and moths) mainly consist of the sucking kind; this part is known as the proboscis or 'haustellum'. The proboscis consists of two tubes held together by hooks and separable for cleaning. The proboscis contains muscles for operating. Each tube is inwardly concave, thus forming a central tube up which moisture is sucked. Suction takes place due to the contraction and expansion of a sac in the head.Evans, W. H. (1927) [https://archive.org/details/TheIdentificationOfIndianButterflies Identification of Indian Butterflies], The Diocesan press. Introduction, pp. 1–35. A specific example of the proboscis being used for feeding is in the species Deilephila elpenor. In this species, the moth hovers in front of the flower and extends its long proboscis to attain its food.{{Cite book|url=https://books.google.com/books?id=ysJZBhHe8IcC&q=deilephila+elpenor+behavior&pg=PA85|title=From Animals to Animats 7: Proceedings of the Seventh International Conference on Simulation of Adaptive Behavior|last1=Hallam|first1=Bridget|last2=Floreano|first2=Dario|last3=Hallam|first3=John|last4=Hayes|first4=Gillian|last5=Meyer|first5=Jean-Arcady|date=2002|publisher=MIT Press|isbn=9780262582179|language=en}}
A few Lepidoptera species lack mouth parts and therefore do not feed in the imago. Others, such as the family Micropterigidae, have mouth parts of the chewing kind.Charles A. Triplehorn and Norman F. Johnson (2005). Borror and Delong's Introduction to the Study of Insects (7th edition). Thomson Brooks/Cole, Belmont, CA. {{ISBN|0-03-096835-6}}
The study of insect mouthparts was helpful for the understanding of the functional mechanism of the proboscis of butterflies (Lepidoptera) to elucidate the evolution of new form-function.{{cite journal|vauthors=Krenn HW, Kristensen NP |year=2000|title=Early evolution of the proboscis of Lepidoptera: external morphology of the galea in basal glossatan moths, with remarks on the origin of the pilifers|journal=Zoologischer Anzeiger |volume=239|pages= 179–196}}{{cite journal|vauthors=Krenn HW, Kristensen NP |year=2004|title= Evolution of proboscis musculature in Lepidoptera|journal= European Journal of Entomology |volume=101|issue=4|pages= 565–575|doi=10.14411/eje.2004.080|doi-access=free|s2cid=54538516 |url=http://pdfs.semanticscholar.org/995a/3e78385f79d354a601ac1ff9b6a09fd56086.pdf}} The study of the proboscis of butterflies revealed surprising examples of adaptations to different kinds of fluid food, including nectar, plant sap, tree sap, dung{{cite journal|title=Proboscis morphology and food preferences in Nymphalidae (Lepidoptera, Papilionoidea)|journal=J. Zool. Lond.|year= 2001|volume=253|pages=17–26|vauthors=Krenn HW, Zulka KP, Gatschnegg T |doi=10.1017/S0952836901000528}}{{cite journal|title=Efficiency of fruit juice feeding in Morpho peleides (Nymphalidae, Lepidoptera)|journal=Journal of Insect Behavior|volume=16|pages=67–77|doi=10.1023/A:1022849312195|year=2003|last1=Knopp|first1=M. C. N.|last2=Krenn|first2=H. W.|issue=1 |bibcode=2003JIBeh..16...67K |s2cid=33428687}}{{cite journal|doi=10.1146/annurev-ento-112408-085338|pmid=19961330|pmc=4040413|title=Feeding Mechanisms of Adult Lepidoptera: Structure, Function, and Evolution of the Mouthparts|journal=Annual Review of Entomology|volume=55|pages=307–27|year=2010|last1=Krenn|first1=Harald W.}} and of adaptations to the use of pollen as complementary food in Heliconius butterflies.{{cite journal|title=Mechanical damage to pollen aids nutrient acquisition in Heliconius butterflies (Nymphalidae)|journal=Arthropod-Plant Interactions|volume=3|issue=4|pages=203–208|doi=10.1007/s11829-009-9074-7|pmid=24900162|year=2009|last1=Krenn|first1=Harald W.|last2=Eberhard|first2=Monika J. B.|last3=Eberhard|first3=Stefan H.|last4=Hikl|first4=Anna-Laetitia|last5=Huber|first5=Werner|last6=Gilbert|first6=Lawrence E.|authorlink6=Lawrence E. Gilbert|pmc=4040415|bibcode=2009APInt...3..203K }}{{cite journal|pmid=22208893|pmc=3281465|title=Pollen processing behavior of Heliconius butterflies: A derived grooming behavior|journal=Journal of Insect Science|volume=11|issue=99|pages=99|year=2011|last1=Hikl|first1=A. L.|last2=Krenn|first2=H. W.|doi=10.1673/031.011.9901}} An extremely long proboscis appears within different groups of flower-visiting insects, but is relatively rare.
{{clear}}
= Gastropods =
{{expand section|date=August 2023|with=more information, examples, and links.}}
{{multiple image
|align=right
|total_width=375
|image1=Mitra-mitra.jpg
|caption1=Proboscis of a predatory marine snail Mitra mitra.
|image2=Kelletia kelletii 4.jpg
|caption2=Kellet's whelks feeding on a dead fish using a long, prehensile proboscis.}}
Some evolutionary lineages of gastropods have evolved a proboscis. In gastropods, the proboscis is an elongation of the snout with the ability to retract inside the body; it can be used for feeding, sensing the environment, and in some cases, capturing prey or attaching to hosts. Three major types of proboscises have been identified: pleurembolic (partially retractable), acrembolic (fully retractable), and intraembolic (variable in structure). Acrembolic proboscises are usually found in parasitic gastropods.{{cite journal|journal=Malacopedia|issn=2595-9913|edition=Volume 2(4): 22–29|last=Simone|first=Luiz|date=September 2019|title=The proboscis of the Gastropoda 1: its evolution|url=https://www.researchgate.net/publication/336014299}}{{cite journal|journal=Journal of Molluscan Studies|author=Ball, A.D. and Andrews, E.B. and Taylor, J.D.|title=THE ONTOGENY OF THE PLEUREMBOLIC PROBOSCIS IN NUCELLA LAPILLUS (GASTROPODA: MURICIDAE) |volume=63|number=1|pages=87–89|date=1997-02-01|doi=10.1093/mollus/63.1.87 |issn=0260-1230|url=https://academic.oup.com/mollus/article-pdf/63/1/87/3011806/63-1-87.pdf}}
{{clear}}
Vertebrates
File:Asian Elephant, Royal Chitwan National Park.jpg
The elephant's trunk and the tapir's elongated nose are called "proboscis", as is the snout of the male elephant seal.
Notable mammals with some form of proboscis are:
- Aardvark
- Anteater
- Elephant
- Elephant shrew
- Hispaniolan solenodon
- Echidna
- Elephant seal
- Leptictidium (extinct)
- Moeritherium (extinct)
- Numbat
- Proboscis monkey
- Saiga antelope
- Members of the tapir family
The proboscis monkey is named for its enormous nose.
The human nose is sometimes called a proboscis, especially when large or prominent.
See also
- {{annotated link|Beak}}
- {{annotated link|Nostril}}
- {{annotated link|Rostrum (anatomy) }}
- {{annotated link|Snout}}