pyridine-N-oxide
{{DISPLAYTITLE:Pyridine-N-oxide}}
{{chembox
| Watchedfields = changed
| Name =Pyridine-N-oxide
| verifiedrevid = 464376916
| ImageFileL1 = Pyridine-N-oxide.png
| ImageSizeL1 = 80
| ImageAltL1 = Skeletal formula
| ImageFileR1 = Pyridine-N-oxide-3D-balls.png
| ImageSizeR1 = 120
| ImageAltR1 = Ball-and-stick model
| PIN = 1λ5-Pyridin-1-one
| OtherNames = Pyridine-1-oxide
|Section1={{Chembox Identifiers
| CASNo_Ref = {{cascite|correct|CAS}}
| CASNo = 694-59-7
| ChEBI_Ref = {{ebicite|correct|EBI}}
| ChEBI = 29136
| ChEMBL = 3278446
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 12229
| EINECS = 211-774-6
| PubChem = 12753
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII = 91F12JJJ4H
| InChI = 1/C5H5NO/c7-6-4-2-1-3-5-6/h1-5H
| InChIKey = ILVXOBCQQYKLDS-UHFFFAOYAZ
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| StdInChI = 1S/C5H5NO/c7-6-4-2-1-3-5-6/h1-5H
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey = ILVXOBCQQYKLDS-UHFFFAOYSA-N
| SMILES = c1cc[n+](cc1)[O-]
}}
|Section2={{Chembox Properties
| C=5 | H=5 | N=1 | O=1
| Appearance = Colourless solid
| Density =
| MeltingPtC = 65 to 66
| MeltingPt_notes =
| BoilingPtC = 270
| Solubility = high
| pKa = 0.8 (of conjugate acid)
}}
}}
Pyridine-N-oxide is the heterocyclic compound with the formula C5H5NO. This colourless, hygroscopic solid is the product of the oxidation of pyridine. Its synthesis was first reported by Jakob Meisenheimer, who used peroxybenzoic acid as the oxidant.{{cite journal|first = Jakob|last = Meisenheimer|authorlink = Jakob Meisenheimer|title = Über Pyridin-, Chinolin- und Isochinolin-N-oxyd|language = German|journal = Ber. Dtsch. Chem. Ges.|volume = 59|pages = 1848–1853|doi = 10.1002/cber.19260590828|year = 1926|issue = 8}} The compound is used infrequently as an oxidizing reagent in organic synthesis.{{cite encyclopedia|first1 = S. Nicholas|last1 = Kilényi|first2 = James J.|last2 = Mousseau|date = 20 September 2015|doi = 10.1002/047084289X.rp283.pub2|title = Pyridine N-Oxide |pages = 1–6|encyclopedia = Encyclopedia of Reagents for Organic Synthesis|publisher = John Wiley & Sons|isbn = 9780470842898}}
Structure
The structure of pyridine-N-oxide is very similar to that of pyridine with respect to the parameters for the ring. The molecule is planar. The N–O distance is 1.34{{nbsp}}Å. The C–N–C angle is 124°, 7° wider than in pyridine.{{cite journal |doi=10.1107/S0567740871002334|title=The Crystal Structure of Pyridine 1-oxide |year=1971 |last1=Ülkü |first1=D. |last2=Huddle |first2=B. P. |last3=Morrow |first3=J. C. |journal=Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry |volume=27 |issue=2 |pages=432–436 |bibcode=1971AcCrB..27..432U }}
Synthesis
The oxidation of pyridine can be achieved with a number of peroxy acids, including peracetic acid and peroxybenzoic acid.{{cite journal|first1 = H. S.|last1 = Mosher|first2 = L.|last2 = Turner|first3 = A.|last3 = Carlsmith|title = Pyridine-N-oxide |journal=Org. Synth.|year = 1953 |volume=33 |page=79 |doi = 10.15227/orgsyn.033.0079}} Oxidation can also be effected by a modified Dakin reaction using a urea–hydrogen peroxide complex,{{cite journal |title = The Urea−Hydrogen Peroxide Complex: Solid-State Oxidative Protocols for Hydroxylated Aldehydes and Ketones (Dakin Reaction), Nitriles, Sulfides, and Nitrogen Heterocycles|first1 = Rajender S.|last1 = Varma|first2 = Kannan P.|last2 = Naicker|journal = Org. Lett.|year = 1999 |volume = 1|issue = 2|pages = 189–192|doi = 10.1021/ol990522n}} and sodium perborate{{cite journal|journal = Tetrahedron|volume = 45|issue = 11 |year = 1989|pages = 3299–3306|title = Further functional group oxidations using sodium perborate|first1 = Alexander|last1 = McKillop|first2 = Duncan|last2 = Kemp|doi = 10.1016/S0040-4020(01)81008-5}} or, using methylrhenium trioxide ({{chem|CH|3|ReO|3}}) as catalyst, with sodium percarbonate.{{cite journal|title = Rhenium-Catalyzed Highly Efficient Oxidations of Tertiary Nitrogen Compounds to N-Oxides Using Sodium Percarbonate as Oxygen Source|first1 = Suman L.|last1 = Jain|first2 = Jomy K.|last2 = Joseph|first3 = Bir|last3 = Sain|journal = Synlett|volume = 2006|issue = 16|year = 2006|pages = 2661–2663|doi = 10.1055/s-2006-951487}}
Reactions
Pyridine N-oxide is five orders of magnitude less basic than pyridine: the pKa of protonated pyridine-N-oxide is 0.8.{{cite journal |doi=10.1016/0003-2670(95)00594-3 |title=Studies on correlations of acid-base properties of substituted pyridine N-oxides in solutions. Part 1. Correlations of the p Ka values in non-aqueous solvents and water |year=1996 |last1=Chmurzyński |first1=L. |journal=Analytica Chimica Acta |volume=321 |issue=2–3 |pages=237–244 }} Protonated derivatives are isolable, e.g., [C5H5NOH]Cl. Further demonstrating its (feeble) basicity, pyridine-N-oxide also serves as a ligand in coordination chemistry. A host of transition metal complexes of pyridine-N-oxides are known.
Treatment of the pyridine-N-oxide with phosphorus oxychloride gives 4- and 2-chloropyridines.{{cite book|first = E. F. V.|last = Scriven|title = Comprehensive Heterocyclic Chemistry: The Structure, Reactions, Synthesis and Uses of Heterocyclic Compounds|editor1-first = Alan R.|editor1-last = Katritzky|editor1-link = Alan R. Katritzky|editor2-first = Charles Wayne|editor2-last = Rees|editor2-link = Charles Rees|editor3-first = Otto|editor3-last = Meth-Cohn|publisher = Pergamon Press|year = 1984|chapter = Pyridines and their Benzo Derivatives: (ii) Reactivity at Ring Atoms|volume = 2|pages = 165–314|doi = 10.1016/B978-008096519-2.00027-8|isbn = 9780080307015}}
Related pyridine-''N''-oxides
Pyridine-N-oxides are uncommon in nature. 2-(Methyldithio)pyridine-N-oxide and related compounds have been isolated from species of Allium.{{cite journal |doi=10.1021/np800572r |title=Bioactive Pyridine- N -oxide Disulfides from Allium stipitatum |date=2009 |last1=o'Donnell |first1=Gemma |last2=Poeschl |first2=Rosemarie |last3=Zimhony |first3=Oren |last4=Gunaratnam |first4=Mekala |last5=Moreira |first5=Joao B. C. |last6=Neidle |first6=Stephen |last7=Evangelopoulos |first7=Dimitrios |last8=Bhakta |first8=Sanjib |last9=Malkinson |first9=John P. |last10=Boshoff |first10=Helena I. |last11=Lenaerts |first11=Anne |last12=Gibbons |first12=Simon |journal=Journal of Natural Products |volume=72 |issue=3 |pages=360–365 |pmid=19093848 |pmc=2765505 |bibcode=2009JNAtP..72..360O }}
The N-oxides of various pyridines are precursors to useful drugs:{{Ullmann|doi=10.1002/14356007.a22_399|chapter=Pyridine and Pyridine Derivatives|year=2000|last1= Shimizu|first1=Shinkichi|last2=Watanabe|first2=Nanao|last3=Kataoka|first3 =Toshiaki|last4=Shoji|first4=Takayuki|last5=Abe|first5=Nobuyuki|last6=Morishita|first6=Sinji|last7=Ichimura|first7=Hisao|isbn=3527306730}}
- Nicotinic acid N-oxide, derived from nicotinic acid is a precursor to niflumic acid and pranoprofen.
- 2,3,5-Trimethylpyridine N-oxide is a precursor to the drug omeprazole
- 2-Chloropyridine N-oxide is a precursor to the fungicide zinc pyrithione
Safety
Further reading
- Synthesis of N-oxides from substituted pyridines: {{cite journal|title = Recent trends in the chemistry of pyridine N-oxides|first = Shaker|last = Youssif|journal = Arkivoc|year = 2001| volume=2001 |pages = 242–268| doi=10.3998/ark.5550190.0002.116 |url = http://www.arkat-usa.org/get-file/19897/|doi-access = free|hdl = 2027/spo.5550190.0002.116|hdl-access = free}}