q-Krawtchouk polynomials

{{DISPLAYTITLE:q-Krawtchouk polynomials}}

In mathematics, the q-Krawtchouk polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme {{harvs|txt | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=Springer-Verlag | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010|loc=14}}. give a detailed list of their properties.

{{harvtxt|Stanton|1981}} showed that the q-Krawtchouk polynomials are spherical functions for 3 different Chevalley groups over finite fields, and {{harvtxt|Koornwinder|Wong|Koekoek|Swarttouw|2010–2022}} showed that they are related to representations of the quantum group SU(2).

Definition

The polynomials are given in terms of basic hypergeometric functions by

:K_n(q^{-x};p,N;q)={}_3\phi_2\left[\begin{matrix}

q^{-n},q^{-x},-pq^n\\

q^{-N},0\end{matrix}

;q,q\right],\quad n=0,1,2,...,N.

See also

Sources

{{refbegin}}

  • {{Citation| title = Basic hypergeometric series | edition = 2nd

| last1 = Gasper | first1 = George

| last2 = Rahman | first2 = Mizan

| year = 2004

| publisher = Cambridge University Press

| volume = 96 | series = Encyclopedia of Mathematics and its Applications

| isbn = 978-0-521-83357-8 | mr = 2128719

}}

  • {{Citation| title = Hypergeometric orthogonal polynomials and their q-analogues

| last1 = Koekoek | first1 = Roelof

| last2 = Lesky | first2 = Peter A.

| last3 = Swarttouw | first3 = René F.

| year = 2010

| publisher = Springer-Verlag | location = Berlin, New York

| series = Springer Monographs in Mathematics

| doi = 10.1007/978-3-642-05014-5 | isbn = 978-3-642-05013-8 | mr = 2656096

}}

  • {{Citation| contribution = Chapter 18 Orthogonal Polynomials

| title = NIST Handbook of Mathematical Functions

| last1 = Koornwinder | first1 = Tom H.

| last2 = Wong | first2 = Roderick S. C.

| last3 = Koekoek | first3 = Roelof

| last4 = Swarttouw | first4 = René F.

| year = 2010–2022

| editor1-last = Olver | editor1-first = Frank W. J. | editor1-link = Frank W. J. Olver

| editor2-last = Lozier | editor2-first = Daniel M.

| editor3-last = Boisvert | editor3-first = Ronald F.

| editor4-last = Clark | editor4-first = Charles W.

| publisher = Cambridge University Press

| contribution-url = http://dlmf.nist.gov/18

| isbn = 978-0-521-19225-5 | mr = 2723248

}}

  • {{cite thesis| type = Ph.D. thesis| title = Moments of Classical Orthogonal Polynomials

| last = Sadjang | first = Patrick Njionou

| publisher = Universität Kassel

| date = n.d. | citeseerx = 10.1.1.643.3896

}}

  • {{Citation| title = Three addition theorems for some q-Krawtchouk polynomials

| last = Stanton | first = Dennis | year = 1981

| journal = Geometriae Dedicata

| volume = 10 | issue = 1 | pages = 403–425

| doi = 10.1007/BF01447435 | issn = 0046-5755 | mr = 608153

| s2cid = 119838893 }}

{{refend}}

Category:Orthogonal polynomials

Category:Q-analogs

Category:Special hypergeometric functions