quadratic pair

{{Short description|Mathematical Quadratic formula}}

In mathematical finite group theory, a quadratic pair for the odd prime p, introduced by {{harvtxt|Thompson|1971}}, is a finite group G together with a quadratic module, a faithful representation M on a vector space over the finite field with p elements such that G is generated by elements with minimal polynomial (x − 1)2. Thompson classified the quadratic pairs for p ≥ 5. {{harvtxt|Chermak|2004}} classified the quadratic pairs for p = 3. With a few exceptions, especially for p = 3, groups with a quadratic pair for the prime p tend to be more or less groups of Lie type in characteristic p.

See also

References

  • {{Citation | last1=Chermak | first1=Andrew | title=Quadratic pairs | doi=10.1016/S0021-8693(03)00334-X | mr=2059620 | year=2004 | journal=Journal of Algebra | issn=0021-8693 | volume=277 | issue=1 | pages=36–72| doi-access=free }}
  • {{Citation | last1=Thompson | first1=John G. | author1-link=John G. Thompson | title=Actes du Congrès International des Mathématiciens (Nice, 1970) |publisher=Gauthier-Villars | mr=0430043 | year=1971 | volume=1 | chapter=Quadratic pairs | pages=375–376}}

Category:Finite groups