quantifier rank

{{Short description|Depth of nesting of quantifiers in a formula}}

In mathematical logic, the quantifier rank of a formula is the depth of nesting of its quantifiers. It plays an essential role in model theory.

The quantifier rank is a property of the formula itself (i.e. the expression in a language). Thus two logically equivalent formulae can have different quantifier ranks, when they express the same thing in different ways.

Definition

= In first-order logic =

Let \varphi be a first-order formula. The quantifier rank of \varphi, written \operatorname{qr}(\varphi), is defined as:

  • \operatorname{qr}(\varphi) = 0, if \varphi is atomic.
  • \operatorname{qr}(\varphi_1 \land \varphi_2) = \operatorname{qr}(\varphi_1 \lor \varphi_2) = \max(\operatorname{qr}(\varphi_1), \operatorname{qr}(\varphi_2)).
  • \operatorname{qr}(\lnot \varphi) = \operatorname{qr}(\varphi).
  • \operatorname{qr}(\exists_x \varphi) = \operatorname{qr}(\varphi) + 1.
  • \operatorname{qr}(\forall_x \varphi) = \operatorname{qr}(\varphi) + 1.

Remarks

  • We write \operatorname{FO}[n] for the set of all first-order formulas \varphi with \operatorname{qr}(\varphi) \le n.
  • Relational \operatorname{FO}[n] (without function symbols) is always of finite size, i.e. contains a finite number of formulas.
  • In prenex normal form, the quantifier rank of \varphi is exactly the number of quantifiers appearing in \varphi.

= In higher-order logic =

For fixed-point logic, with a least fixed-point operator \operatorname{LFP}: \operatorname{qr}([\operatorname{LFP}_\phi]y) = 1 + \operatorname{qr}( \phi ).

Examples

  • A sentence of quantifier rank 2:

: \forall x\exists y R(x, y)

  • A formula of quantifier rank 1:

: \forall x R(y, x) \wedge \exists x R(x, y)

  • A formula of quantifier rank 0:

: R(x, y) \wedge x \neq y

: \forall x \exists y \exists z ((x \neq y \wedge x R y) \wedge (x \neq z \wedge z R x))

  • A sentence, equivalent to the previous, although of quantifier rank 2:

: \forall x (\exists y (x \neq y \wedge x R y)) \wedge \exists z (x \neq z \wedge z R x ))

See also

References

{{Reflist}}

  • {{Citation

| last1=Ebbinghaus

| first1=Heinz-Dieter

| authorlink1=Heinz-Dieter Ebbinghaus

| last2=Flum

| first2=Jörg

| title=Finite Model Theory

| publisher=Springer

| isbn=978-3-540-60149-4

| year=1995

}}.

  • {{citation | last1=Grädel | first1=Erich | last2=Kolaitis | first2=Phokion G. | last3=Libkin | first3=Leonid | author3-link=Leonid Libkin | last4=Maarten | first4=Marx | last5=Spencer | first5=Joel | author5-link=Joel Spencer | last6=Vardi | first6=Moshe Y. | author6-link=Moshe Y. Vardi | last7=Venema | first7=Yde | last8=Weinstein | first8=Scott | title=Finite model theory and its applications | zbl=1133.03001 | series=Texts in Theoretical Computer Science. An EATCS Series | location=Berlin | publisher=Springer-Verlag | isbn=978-3-540-00428-8 | year=2007 | page=133 }}.