quasisymmetric function

{{for|quasisymmetric functions in the theory of metric spaces or complex analysis|quasisymmetric map}}

In algebra and in particular in algebraic combinatorics, a quasisymmetric function is any element in the ring of quasisymmetric functions which is in turn a subring of the formal power series ring with a countable number of variables. This ring generalizes the ring of symmetric functions. This ring can be realized as a specific limit of the rings of quasisymmetric polynomials in n variables, as n goes to infinity. This ring serves as universal structure in which relations between quasisymmetric polynomials can be expressed in a way independent of the number n of variables (but its elements are neither polynomials nor functions).

Definitions

The ring of quasisymmetric functions, denoted QSym, can be defined over any commutative ring R such as the integers.

Quasisymmetric

functions are power series of bounded degree in variables x_1,x_2,x_3, \dots with coefficients in R, which are shift invariant in the sense that the coefficient of the monomial x_1^{\alpha_1}x_2^{\alpha_2} \cdots x_k^{\alpha_k} is equal to the coefficient of the monomial x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2}\cdots x_{i_k}^{\alpha_k} for any strictly increasing sequence of positive integers

i_1< i_2< \cdots < i_k indexing the variables and any positive integer sequence (\alpha_1, \alpha_2,\ldots,\alpha_k) of exponents.

Stanley, Richard P. Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999. {{ISBN|0-521-56069-1}} (hardback) {{ISBN|0-521-78987-7}} (paperback).

Much of the study of quasisymmetric functions is based on that of symmetric functions.

A quasisymmetric function in finitely many variables is a quasisymmetric polynomial.

Both symmetric and quasisymmetric polynomials may be characterized in terms of actions of the symmetric group S_n

on a polynomial ring in n variables x_1,\dots, x_n.

One such action of S_n permutes variables,

changing a polynomial p(x_1,\dots,x_n) by iteratively swapping pairs (x_i, x_{i+1})

of variables having consecutive indices.

Those polynomials unchanged by all such swaps

form the subring of symmetric polynomials.

A second action of S_n conditionally permutes variables,

changing a polynomial p(x_1,\ldots,x_n)

by swapping pairs (x_i, x_{i+1}) of variables

except in monomials containing both variables.{{citation|last1=Hivert|first1=Florent|title=Hecke Algebras, Difference Operators, and Quasi-Symmetric Functions|journal= Advances in Mathematics |volume=155 |year=2000 |pages=181–238 |issue= 2|doi=10.1006/aima.1999.1901|doi-access=free}}

Those polynomials unchanged by all such conditional swaps form

the subring of quasisymmetric polynomials. One quasisymmetric polynomial in four variables x_1,x_2,x_3,x_4 is the polynomial

: x_1^2 x_2 x_3 + x_1^2 x_2 x_4 + x_1^2 x_3 x_4 + x_2^2 x_3 x_4. \,

The simplest symmetric polynomial containing these monomials is

:

\begin{align}

x_1^2 x_2 x_3 + x_1^2 x_2 x_4 + x_1^2 x_3 x_4 + x_2^2 x_3 x_4

+ x_1 x_2^2 x_3 + x_1 x_2^2 x_4 + x_1 x_3^2 x_4 + x_2 x_3^2 x_4 \\

{} + x_1 x_2 x_3^2 + x_1 x_2 x_4^2 + x_1 x_3 x_4^2 + x_2 x_3 x_4^2. \,

\end{align}

Important bases

QSym is a graded R-algebra, decomposing as

: \operatorname{QSym} = \bigoplus_{n \ge 0} \operatorname{QSym}_n, \,

where \operatorname{QSym}_n is the R-span of all quasisymmetric functions that are homogeneous of degree n. Two natural bases for \operatorname{QSym}_n are the monomial basis \{M_{\alpha} \} and the fundamental basis \{F_{\alpha} \} indexed by compositions \alpha = (\alpha_1, \alpha_2, \ldots , \alpha_k) of n, denoted \alpha \vDash n. The monomial basis consists of M_0=1 and all formal power series

: M_{\alpha} = \sum_{i_1 < i_2 < \cdots < i_k} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_k}^{\alpha_k}. \,

The fundamental basis consists F_0=1 and all formal power series

: F_\alpha = \sum_{\alpha \succeq \beta} M_\beta, \,

where \alpha \succeq \beta means we can obtain \alpha by adding together adjacent parts of \beta, for example, (3,2,4,2) \succeq (3,1,1,1,2,1,2). Thus, when the ring R is the ring of rational numbers, one has

: \operatorname{QSym}_n = \operatorname{span}_{\mathbb{Q}} \{ M_\alpha \mid \alpha \vDash n \} = \operatorname{span}_{\mathbb{Q}} \{ F_\alpha \mid \alpha \vDash n \}. \,

Then one can define the algebra of symmetric functions \Lambda = \Lambda _0 \oplus \Lambda _1 \oplus \cdots as the subalgebra of QSym spanned by the monomial symmetric functions m_0=1 and all formal power series m_\lambda = \sum M_\alpha, where the sum is over all compositions \alpha which rearrange to the integer partition \lambda. Moreover, we have \Lambda_n = \Lambda \cap \operatorname{QSym}_n. For example, F_{(1,2)}=M_{(1,2)}+M_{(1,1,1)} and m_{(2,1)}=M_{(2,1)}+M_{(1,2)}.

Other important bases for quasisymmetric functions include the basis of quasisymmetric Schur functions,{{citation|first1=J. |last1=Haglund|first2= K. |last2=Luoto|first3=S. |last3=Mason |first4= S. |last4=van Willigenburg | author4-link=Stephanie van Willigenburg |title= Quasisymmetric Schur functions|journal=Journal of Combinatorial Theory | series=Series A|volume= 118 |year=2011|pages= 463–490|doi=10.1016/j.jcta.2009.11.002|issue=2|arxiv=0810.2489|doi-access=free}} the "type I" and "type II" quasisymmetric power sums,{{citation|first1=Christina |last1=Ballantine|first2=Zajj |last2=Daughtery|first3=Angela |last3=Hicks |first4=Sarah |last4=Mason |first5=Elizabeth |last5=Niese |title=On Quasisymmetric Power Sums|journal=Journal of Combinatorial Theory | series=Series A|volume= 175 |year=2020|page=105273 |arxiv=1710.11613|doi=10.1016/j.jcta.2020.105273|s2cid=51775423 }} and bases related to enumeration in matroids.{{citation|first=K. |last=Luoto|title=A matroid-friendly basis for the quasisymmetric functions|journal=Journal of Combinatorial Theory | series=Series A|volume= 115 |year=2008|pages= 777–798|bibcode=2007arXiv0704.0836L|arxiv=0704.0836|doi=10.1016/j.jcta.2007.10.003|issue=5|doi-access=free}}{{citation|first1=L. |last1=Billera| authorlink1=Louis Billera | first2=N. |last2=Jia |first3= V. |last3=Reiner|title= A quasisymmetric function for matroids|journal= European Journal of Combinatorics|volume= 30 |year=2009|pages= 1727–1757|bibcode=2006math......6646B|arxiv=math/0606646|doi=10.1016/j.ejc.2008.12.007|doi-access=free|issue=8}}

Applications

Quasisymmetric functions have been applied in enumerative combinatorics, symmetric function theory, representation theory, and number theory. Applications of

quasisymmetric functions include enumeration of P-partitions,

Stanley, Richard P. Ordered structures and partitions, Memoirs of the American Mathematical Society, No. 119, American Mathematical Society, 1972.

Gessel, Ira. Multipartite P-partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983), 289–317, Contemp. Math., 34, Amer. Math. Soc., Providence, RI, 1984.

permutations,{{citation|

last1=Gessel|first1=Ira|author1-link=Ira Gessel|last2= Reutenauer|first2= Christophe|title=Counting permutations with given cycle structure and descent set |journal=Journal of Combinatorial Theory |series=Series A |volume=64 |year=1993|pages= 189–215|issue= 2|

doi=10.1016/0097-3165(93)90095-P|doi-access=free}}{{citation|last1= Shareshian|first1= John|last2= Wachs|first2= Michelle L.|author2-link= Michelle L. Wachs |title=q-Eulerian polynomials: excedance number and major index|journal= Electron. Res. Announc. Amer. Math. Soc. |volume=13 |year=2007|pages= 33–45|doi= 10.1090/S1079-6762-07-00172-2|issue= 4|arxiv= math/0608274|s2cid= 15394306}}{{citation|last1= Shareshian|first1= John|last2= Wachs|first2= Michelle L.|author2-link= Michelle L. Wachs |title= Eulerian quasisymmetric functions|journal=Advances in Mathematics |volume=225 |issue=6 |year= 2010 |pages=2921–2966|doi= 10.1016/j.aim.2010.05.009|doi-access=free|arxiv= 0812.0764}}

{{citation|last=Hyatt|first= Matthew|title=Eulerian quasisymmetric functions for the type B Coxeter group and other wreath product groups|arxiv=1007.0459|bibcode=2010arXiv1007.0459H|journal=Advances in Applied Mathematics |volume=48 |year=2012 |issue= 3|pages=465–505 |doi=10.1016/j.aam.2011.11.005|s2cid= 119118644}}

tableaux,{{citation|last=Stanley|first=Richard P.|authorlink=Richard P. Stanley|title=On the number of reduced decompositions of elements of Coxeter groups|journal= European Journal of Combinatorics |volume= 5 |year=1984 |pages= 359–372 |issue= 4 |doi=10.1016/s0195-6698(84)80039-6|doi-access=free}} chains of posets,{{citation|last=Ehrenborg|first= Richard|author-link=Richard Ehrenborg |title=On posets and Hopf algebras|journal= Advances in Mathematics |volume= 119

|year=1996|pages= 1–25|issue= 1|doi=10.1006/aima.1996.0026|doi-access=free}} reduced decompositions in finite Coxeter groups (via Stanley symmetric functions), and parking functions.Haglund, James; The q,t-Catalan numbers and the space of diagonal harmonics.

University Lecture Series, 41. American Mathematical Society, Providence, RI, 2008. viii+167 pp. {{ISBN|978-0-8218-4411-3}}; 0-8218-4411-3 In symmetric function theory and representation theory, applications include the study of Schubert polynomials,{{citation|last1=Billey|first1= Sara C.|last2=Jockusch|first2=William|last3= Stanley|first3= Richard P.|author3-link=Richard P. Stanley|title=Some combinatorial properties of Schubert polynomials|journal=Journal of Algebraic Combinatorics |volume=2 |year=1993|pages= 345–374|issue= 4|doi=10.1023/A:1022419800503|url=https://deepblue.lib.umich.edu/bitstream/2027.42/46173/1/10801_2004_Article_415600.pdf|doi-access=free}}{{citation|last1=Fomin|first1=Sergey|author1-link=Sergey Fomin|last2=Stanley|first2= Richard P. | author2-link=Richard P. Stanley |title=Schubert polynomials and the nil-Coxeter algebra|journal= Advances in Mathematics |volume=103 |year=1994|pages= 196–207|issue= 2|doi=10.1006/aima.1994.1009|doi-access=free}} Macdonald polynomials,{{citation|last=Assaf|first= Sami|title=Dual Equivalence Graphs I: A combinatorial proof of LLT and Macdonald positivity|year= 2010|arxiv=1005.3759|bibcode = 2010arXiv1005.3759A }}

Hecke algebras,{{citation|last1=Duchamp|first1= Gérard|last2= Krob|first2= Daniel|last3= Leclerc|first3= Bernard|last4= Thibon|first4= Jean-Yves|title= Fonctions quasi-symétriques, fonctions symétriques non commutatives et algèbres de Hecke à q=0|journal= C. R. Acad. Sci. Paris |series=Sér. I Math. |volume=322 |year=1996|pages= 107–112|issue= 2}} and Kazhdan–Lusztig polynomials.{{citation |last1=Billera |first1= Louis J. |authorlink1=Louis Billera |last2= Brenti |first2= Francesco |year=2011 |title= Quasisymmetric functions and Kazhdan–Lusztig polynomials| arxiv=0710.3965 |mode=cs2|journal = Israel Journal of Mathematics|volume = 184|pages = 317–348|doi = 10.1007/s11856-011-0070-0|doi-access=free}} Often quasisymmetric functions provide a powerful bridge between combinatorial structures and symmetric functions.

Related algebras

As a graded Hopf algebra, the dual of the ring of quasisymmetric functions is the ring of noncommutative symmetric functions.

Every symmetric function is also a quasisymmetric function, and hence the ring of symmetric functions is a subalgebra of the ring of quasisymmetric functions.

The ring of quasisymmetric functions is the terminal object in category of graded Hopf algebras with a single character.{{citation|last1=Aguiar|first1= Marcelo|last2=Bergeron|first2= Nantel|last3= Sottile|first3= Frank |title=Combinatorial Hopf algebras and generalized Dehn–Sommerville relations|journal= Compositio Mathematica |volume=142 |year=2006|pages= 1–30 |issue= 1|bibcode=2003math.....10016A|arxiv=math/0310016|doi=10.1112/S0010437X0500165X|s2cid= 2635356}}

Hence any such Hopf algebra has a morphism to the ring of quasisymmetric functions.

One example of this is the peak algebra.{{citation|last=Stembridge|first= John R. |title=Enriched P-partitions|journal= Trans. Amer. Math. Soc. |volume=349|year=1997|pages= 763–788 |issue=2|doi=10.1090/S0002-9947-97-01804-7|doi-access=free}}

References

{{Reflist}}