random phase approximation

File:Random phase approximation ring diagrams.png, dashed lines for two-particle interactions.]]

The random phase approximation (RPA) is an approximation method in condensed matter physics and nuclear physics. It was first introduced by David Bohm and David Pines as an important result in a series of seminal papers of 1952 and 1953.{{cite journal | last1=Bohm | first1=David |author-link= David Bohm| last2=Pines | first2=David |author-link2=David Pines| title=A Collective Description of Electron Interactions. I. Magnetic Interactions | journal=Physical Review | publisher=American Physical Society (APS) | volume=82 | issue=5 | date=1 May 1951 | issn=0031-899X | doi=10.1103/physrev.82.625 | pages=625–634| bibcode=1951PhRv...82..625B }}{{cite journal | last1=Pines | first1=David |author-link=David Pines| last2=Bohm | first2=David |author-link2=David Bohm| title=A Collective Description of Electron Interactions: II. CollectivevsIndividual Particle Aspects of the Interactions | journal=Physical Review | publisher=American Physical Society (APS) | volume=85 | issue=2 | date=15 January 1952 | issn=0031-899X | doi=10.1103/physrev.85.338 | pages=338–353| bibcode=1952PhRv...85..338P }}{{cite journal | last1=Bohm | first1=David |author-link=David Bohm| last2=Pines | first2=David |author-link2=David Pines| title=A Collective Description of Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas | journal=Physical Review | publisher=American Physical Society (APS) | volume=92 | issue=3 | date=1 October 1953 | issn=0031-899X | doi=10.1103/physrev.92.609 | pages=609–625| bibcode=1953PhRv...92..609B }} For decades physicists had been trying to incorporate the effect of microscopic quantum mechanical interactions between electrons in the theory of matter. Bohm and Pines' RPA accounts for the weak screened Coulomb interaction and is commonly used for describing the dynamic linear electronic response of electron systems. It was further developed to the relativistic form (RRPA) by solving the Dirac equation.{{Cite journal |last1=Deshmukh |first1=Pranawa C. |author-link=Pranawachandra Deshmukh |last2=Manson |first2=Steven T. |date=September 2022 |title=Photoionization of Atomic Systems Using the Random-Phase Approximation Including Relativistic Interactions |journal=Atoms |language=en |volume=10 |issue=3 |pages=71 |doi=10.3390/atoms10030071 |issn=2218-2004 |doi-access=free|bibcode=2022Atoms..10...71D }}{{Cite journal |last1=Johnson |first1=W R |last2=Lin |first2=C D |last3=Cheng |first3=K T |last4=Lee |first4=C M |date=1980-01-01 |title=Relativistic Random-Phase Approximation |url=https://iopscience.iop.org/article/10.1088/0031-8949/21/3-4/029 |journal=Physica Scripta |volume=21 |issue=3–4 |pages=409–422 |doi=10.1088/0031-8949/21/3-4/029 |bibcode=1980PhyS...21..409J |s2cid=94058089 |issn=0031-8949}}

In the RPA, electrons are assumed to respond only to the total electric potential V(r) which is the sum of the external perturbing potential Vext(r) and a screening potential Vsc(r). The external perturbing potential is assumed to oscillate at a single frequency ω, so that the model yields via a self-consistent field (SCF) method {{cite journal | last1=Ehrenreich | first1=H. | last2=Cohen | first2=M. H. | title=Self-Consistent Field Approach to the Many-Electron Problem | journal=Physical Review | publisher=American Physical Society (APS) | volume=115 | issue=4 | date=15 August 1959 | issn=0031-899X | doi=10.1103/physrev.115.786 | pages=786–790| bibcode=1959PhRv..115..786E }} a dynamic dielectric function denoted by εRPA(k, ω).

The contribution to the dielectric function from the total electric potential is assumed to average out, so that only the potential at wave vector k contributes. This is what is meant by the random phase approximation. The resulting dielectric function, also called the Lindhard dielectric function,{{cite journal|author=J. Lindhard| journal=Kongelige Danske Videnskabernes Selskab, Matematisk-Fysiske Meddelelser|volume=28|issue=8|year=1954|url=http://gymarkiv.sdu.dk/MFM/kdvs/mfm%2020-29/mfm-28-8.pdf|title=On the Properties of a Gas of Charged Particles}}N. W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson Learning, Toronto, 1976) correctly predicts a number of properties of the electron gas, including plasmons.G. D. Mahan, Many-Particle Physics, 2nd ed. (Plenum Press, New York, 1990)

The RPA was criticized in the late 1950s for overcounting the degrees of freedom and the call for justification led to intense work among theoretical physicists. In a seminal paper Murray Gell-Mann and Keith Brueckner showed that the RPA can be derived from a summation of leading-order chain Feynman diagrams in a dense electron gas.{{cite journal | last1=Gell-Mann | first1=Murray | last2=Brueckner | first2=Keith A. | title=Correlation Energy of an Electron Gas at High Density | journal=Physical Review | publisher=American Physical Society (APS) | volume=106 | issue=2 | date=15 April 1957 | issn=0031-899X | doi=10.1103/physrev.106.364 | pages=364–368| bibcode=1957PhRv..106..364G | s2cid=120701027 | url=https://authors.library.caltech.edu/3713/1/GELpr57b.pdf }}

The consistency in these results became an important justification and motivated a very strong growth in theoretical physics in the late 50s and 60s.

Applications

=Ground state of an interacting bosonic system=

The RPA vacuum \left|\mathrm{RPA}\right\rangle for a bosonic system can be expressed in terms of non-correlated bosonic vacuum \left|\mathrm{MFT}\right\rangle and original boson excitations \mathbf{a}_{i}^{\dagger}

:\left|\mathrm{RPA}\right\rangle=\mathcal{N}\mathbf{e}^{Z_{ij}\mathbf{a}_{i}^{\dagger}\mathbf{a}_{j}^{\dagger}/2}\left|\mathrm{MFT}\right\rangle

where Z is a symmetric matrix with |Z|\leq 1 and

:\mathcal{N}= \frac{\left\langle \mathrm{MFT}\right|\left.\mathrm{RPA}\right\rangle}{\left\langle \mathrm{MFT}\right|\left.\mathrm{MFT}\right\rangle}

The normalization can be calculated by

:\langle

\mathrm{RPA}|\mathrm{RPA}\rangle=

\mathcal{N}^2 \langle \mathrm{MFT}|

\mathbf{e}^{z_{i}(\tilde{\mathbf{q}}_{i})^2/2}

\mathbf{e}^{z_{j}(\tilde{\mathbf{q}}^{\dagger}_{j})^2/2}

| \mathrm{MFT}\rangle=1

where Z_{ij}=(X^{\mathrm{t}})_{i}^{k} z_{k} X^{k}_{j} is the singular value decomposition of Z_{ij}.

\tilde{\mathbf{q}}^{i}=(X^{\dagger})^{i}_{j}\mathbf{a}^{j}

:\mathcal{N}^{-2}=

\sum_{m_{i}}\sum_{n_{j}} \frac{(z_{i}/2)^{m_{i}}(z_{j}/2)^{n_{j}}}{m!n!}

\langle \mathrm{MFT}|

\prod_{i\,j}

(\tilde{\mathbf{q}}_{i})^{2 m_{i}}

(\tilde{\mathbf{q}}^{\dagger}_{j})^{2 n_{j}}

| \mathrm{MFT}\rangle

:=\prod_{i}

\sum_{m_{i}} (z_{i}/2)^{2 m_{i}} \frac{(2 m_{i})!}{m_{i}!^2}=

:

\prod_{i}\sum_{m_{i}} (z_{i})^{2 m_{i}} {1/2 \choose m_{i}}=\sqrt{\det(1-|Z|^2)}

the connection between new and old excitations is given by

:\tilde{\mathbf{a}}_{i}=\left(\frac{1}{\sqrt{1-Z^2}}\right)_{ij}\mathbf{a}_{j}+

\left(\frac{1}{\sqrt{1-Z^2}}Z\right)_{ij}\mathbf{a}^{\dagger}_{j}.

References